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ABSTRACT 1 

Microscopic traffic simulation has been used extensively to study network-wide congestion, traffic 2 

operations, traffic incidents, vehicle emissions, the performances of newly built transportation 3 

facilities and the effectiveness of traffic improvement projects. Because of the nature of 4 

microscopic simulation, it is typically used to study relatively small networks in which the level 5 

of demand is not too high and the road network is not large. In this study, INTEGRATION, a 6 

microscopic simulation tool, was used to model the Greater Los Angeles Area, a metropolitan area 7 

with a population of more than three million. To overcome the computational challenges 8 

associated with typical large-scale microscopic traffic simulation, the network was divided into 9 

five sub-networks with each network run on a different core, and the input demand file was also 10 

partitioned to account for connectivity between sub-networks. The results show that it is 11 

completely feasible to microscopically simulate large-scale networks. The findings are significant 12 

because they expand the applicability of microscopic simulation tools to large networks, which 13 

could only be modeled macroscopically or mesoscopically before. The agent-based microscopic 14 

results obtained can provide significantly more detailed vehicle-by-vehicle movement data that are 15 

expected to dramatically enhance the data of large-scale network simulations.  16 

  17 
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INTRODUCTION AND PROBLEM STATEMENT 1 

Microscopic traffic simulation is a powerful tool that can track the movements of individual 2 

vehicles and recording detailed driver behavior, including car-following, lane-changing, and gap 3 

acceptance behavior, so that the traffic status of a network can be described based on the results 4 

generated from the simulation at a very detailed level. Microscopic traffic simulation has evolved 5 

significantly since its introduction in the 1990s, particularly due to the development of computer 6 

technology and programming tools. According to the FHWA, more than 30 microscopic 7 

simulation tools have been developed [1]) and are widely used in all stages of transportation 8 

planning, design, management, analysis, and improvement as well as in applications in related 9 

fields such as evacuation and environmental impact analysis. Countless scientific studies have 10 

been conducted using microscopic traffic simulations.  11 

Microscopic simulation is often used for relatively small-sized traffic modeling, where the 12 

network has a limited number of links, and the number of vehicles to be modeled is not too large. 13 

This is because microscopic traffic simulation software typically tracks the agent being modeled 14 

at a relatively high frequency (e.g., 1/10 second when using INTEGRATION) while concurrently 15 

calculating the agent’s detailed location and behavior. When the size of the network or traffic 16 

demand increases, the associated computational workload increases exponentially. Applying 17 

microscopic simulation to a large network requires an extraordinary computational capability 18 

because of the large number of vehicles in the network, the large number of traffic signals that 19 

need to be optimized, and the large number of links and detector locations that should be processed. 20 

Additionally and most importantly, a larger network size corresponds to a larger routing tree and 21 

a longer time needed to build this tree. Because of the complexity of Dijkstra's shortest path 22 

algorithm: O (V2), where V is the number of nodes in the network, the simulation time increases 23 

quadratically with the size of a network.  24 

When a large-scale metropolitan area needs to be modeled in a simulation environment, 25 

mesoscopic, macroscopic, or hybrid traffic simulation models are usually selected to ease the 26 

computational burden.  Burghout et al. used a hybrid mesoscopic-microscopic model that applies 27 

microscopic simulation to areas of specific interest, while simulating a large surrounding network 28 

in lesser detail with a mesoscopic model in two case studies [2].  Balakrishna et al. modeled the I-29 

5 corridor, including 760 nodes and 972 links, using TransModeler where a certain of links of 30 

interest were modeled microscopically while the majority of the network was simulated 31 

macroscopically [3].  Zhao and Sadek modeled the buffalo area, network sized with 2,000 nodes 32 

and 3,000 links, using TRANSIMS during a lake-effect snow storm [4].  Meister et al. used 33 

MATSim-T to simulate a large area of Switzerland with more than 6 million synthetic persons and 34 

1 million links [5].  Kotsialos et al. used METANET, a macroscopic simulator, to simulate a large-35 

scale motorway network around Amsterdam[6]. The network has 654 links, totaling to 143 km. 36 

Sewall et al. used a hybrid simulator to interactively simulate a virtual large-scale network [7].  37 

Zahng et al. modeled the demand of city of Shanghai, a city of about 20 million agents, 50,000 38 

links, and 90,000 destinations, using MATSIM [8].  Zitzow et al. developed a hybrid simulation 39 

model to model the Twin Cities of Minnesota, where there are 19,350 links and 8,403 nodes [9].   40 

However, such modeling methods cannot capture the details of traffic status needed for 41 

research and practice over a large area.  The best way to capture all the details is to conduct the 42 

simulation microscopically. Researchers have to balance between reduced simulation detail and 43 

the potential size of the simulation modeling network.  Possible solutions to this dilemma are: (1) 44 

distributed parallel processing [10-18], which entails distributing the processing over multiple 45 

single-processor machines to allow for the scaling of performance by demand for large-scale 46 
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computations; and (2) simplifying the network by including only major roads and arterials. This 1 

second solution allows the simulation to cover a relatively large area but limits the details of results 2 

generated by the microscopic simulation [19-22]. Based on previous studies, to apply microscopic 3 

simulations in large-scale metropolitan areas, challenges related to high computational load and 4 

accurate modeling input data need to be addressed [23]. 5 

This paper is based on a large-scale study that optimized the decisions of travelers, 6 

including travel mode, departure time, and route choice, to minimize vehicle fuel consumption and 7 

emissions in a large metropolitan area (Los Angeles, California). Details of travelers’ choices are 8 

needed to accurately estimate fuel consumption and optimize system energy usage. However, the 9 

tremendous size of the simulation area prevents the direct microscopic simulation of the system. 10 

To solve this dilemma, a method was designed to partition the network into sub-networks. 11 

Simulation and calibration were then conducted individually within each sub-network. This 12 

method successfully bridged the gap between microscopic simulation and the large network size. 13 

The simulation input files and process were carefully calibrated. The simulation results were 14 

compared against observed traffic volume data. The results indicate that the new methodology can 15 

effectively solve the problems associated with simulating large-scale networks. This method is 16 

potentially general and can be used to model other large-scale metropolitan areas with high demand 17 

and complicated road network configurations.  18 

MODELING METHODOLOGY 19 

The modeling area covers the Greater Los Angeles Area including the downtown LA area and the 20 

immediate vicinity, totaling approximately 500 square miles. The original network with all levels 21 

of road links included more than 180,000 road links. INTEGRATION, an agent-based microscopic 22 

traffic assignment and simulation software, was used as the simulation tool in this study. To obtain 23 

a satisfactory result from microscopic simulation modeling, the following criteria need to be 24 

satisfied: a well-calibrated modeling tool with embedded car-following and route choice models; 25 

accurate input data including network configuration and an origin-destination (OD) matrix; and a 26 

powerful simulation environment to support the extraordinary model size. The following section 27 

presents the strategies used to address each of these criteria. 28 

Modeling Tool: INTEGRATION 29 
INTEGRATION was developed in the late 1980s and continues to be developed at VTTI [24-26]. 30 

INTEGRATION is an integrated simulation and traffic assignment model that creates individual 31 

vehicle trip departures based on an aggregated time-varying O-D matrix. In consideration of traffic 32 

control devices and gap acceptance, INTEGRATION moves vehicles along the network in 33 

accordance with embedded preset traffic assignment models and the Rakha-Pasumarthy-Adjerid 34 

(RPA) car-following model. RPA was developed at VTTI and has been calibrated and improved 35 

with different data sources, including data from the 100-car naturalistic driving study (12 billion 36 

observations) [27, 28]. The RPA model is consistent with the steady-state car-following model 37 

and is constrained by characteristics including vehicle power and traction, aerodynamic drag and 38 

rolling friction, and current momentum and grade resistance [27, 29-33]. Calibration results of the 39 

RPA model proved that the model is consistent with naturalist driving behaviors. Ten different 40 

routing options are available in INTEGRATION. Sub-population feedback assignment was 41 

selected in this study; this option divided the entire driver group into five sub-groups. The paths 42 

for 20% of the drivers were updated every 300 seconds, one sub-group at a time, based on the real-43 

time measurement of link travel time. The simulation tracked the movement of individual vehicles 44 

every 0.1 s, allowing detailed analysis of lane-changing movements and shockwave propagation. 45 
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The simulation also permitted considerable flexibility in representing spatial and temporal 1 

variations in traffic conditions [29, 34, 35]. INTEGRATION parameters are calibrated to support 2 

the large-scale networks by extending the allowable memory. The routing tree size is adjusted to 3 

support the largest sub-network. INTEGRATION was chosen as a base model in this study because 4 

of these unique features.  5 

Model Construction 6 
One largest challenge in large-scale microscopic simulation is obtaining all the needed input data, 7 

including the details of the network configuration (e.g., number of lanes, free-flow speeds, lane 8 

striping, traffic signal timing plans, intersection controls) and, most importantly, an accurate 9 

demand file that reflects the traffic congestion level and hot spots in the network. In this study, a 10 

unique data source and powerful estimation tool were employed to address this challenge.  11 

Network Configuration 12 

Network coding was based on the associate attributes in the original GIS shapefile, where two 13 

variables, the speed class and function class, define the range of capacity and free-flow speed. Also 14 

included in the original file is a lane category variable that gives the number of lanes. The 15 

parameters of the network were set in accordance with the Highway Capacity Manual [36]). An 16 

automatic coding algorithm was developed in MatLab to convert the basic network input files from 17 

ArcGIS shapefiles to the ASCII format needed by INTEGRATION. Manual inspection and 18 

updating were conducted to ensure the accuracy of coding with the aid of Google Aerial Maps 19 

accounting for the upgrades and changes in the road network since the shapefile was created. Final 20 

network parameter settings are listed in TABLE 1. The traffic control types (traffic signals, stop 21 

signs, or yield signs) at each intersection were extracted from OpenStreetMap data [37]). Google 22 

Maps was used as a supplemental tool at locations where the traffic control data were missing. 23 

Traffic signal timing phase lengths and cycles are typically designed and managed by local traffic 24 

agencies, and it is infeasible to contact these agencies individually to obtain traffic signal timing 25 

plans over the entire area. Consequently, the traffic signal timing plans were optimized by 26 

INTEGRATION at the frequency of 300 seconds.  27 

 28 

Function 

Class 
Capacity 

(Veh/Hour/Lane) 
Jam Density 

(Veh/Lane/KM) 
Speed 

Category 
Free Flow 

Speed (KM/H) 
Speed at Capacity 

(KM/H) 
1 2400 180 2 110 94 
2 2400 180 3 90 76 
3 2300 180 4 70 60 
4 2100 180 5 45 38 
5 2000 180 6 40 34 

   7 30 25 

   8 15 12 

 29 

TABLE 1 Attributes of Road Links of All Levels 30 

Static O-D Estimation 31 

A static O-D demand file was generated using QueensOD [38], a software application developed 32 

by VTTI researchers. QueensOD estimates the most-likely time-dependent static O-D using 33 

observed link traffic flows, observed link turning movement counts, link travel times, and a seed 34 

matrix. QueensOD iteratively minimizes the error between the observed link volumes and 35 

estimated link flow to generate a most-likely O-D matrix that is as close as possible to the seed 36 
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matrix. FIGURE 1 illustrates the flow of QueensOD. According to Aerde et al. [39] and Rakha 1 

[40], the objective function for estimating the static O-D using QueensOD is given as 2 

 3 

𝑍 (𝑇𝑖𝑗(𝑡)) =
𝑇(𝑡)!

∏ 𝑇𝑖𝑗(𝑡)!𝑖𝑗
∏ (

𝜏𝑖𝑗(𝑡)

∑ 𝜏𝑖𝑗(𝑡)𝑖𝑗
)𝑇𝑖𝑗(𝑡)

𝑖𝑗  ,       (1) 4 

 5 

where Z is the entropy that is maximized by the optimum O-D matrix 𝑇𝑖𝑗(𝑡);  6 

𝜏𝑖𝑗(𝑡) is the seed O-D matrix. 7 

The input files needed for QueensOD include links, nodes, observed link flows, and a seed 8 

matrix. In this study, the median of the traffic count data for ten randomly selected Tuesdays and 9 

Wednesdays in 2014, which were provided by the Caltrans Performance Measurement System 10 

(PEMS) [41]), were used as the input observed link flow data for QueensOD. The seed file, which 11 

is used as the starting point for demand estimation, was generated from the planning model input 12 

data obtained from the Southern California Association of Governments (SCAG). SCAG planning 13 

data originally included five-time periods (24 hours) for weekdays with 4,109 internal zones and 14 

83 external zones. The area covered by the SCAG planning model was spatially joined with the 15 

network of the simulation model. The traffic analysis zones (TAZs) were disaggregated or 16 

aggregated depending on the spatial distribution of the TAZ compared to the location of the 17 

simulation zone, as shown in FIGURE 2. The associated demand of TAZ was distributed over 18 

1,100 zones.  19 

 20 

 21 
FIGURE 1 Process for Estimating Static O-D Matrix 22 
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 1 
FIGURE 2 TAZs and Zones 2 

On average, the resulting global O-D had over 450,000 O-D pairs, totaling 400~500 3 

thousand vehicles per hour. However, the static O-D tended to overestimate the demand, thus 4 

imposing an unrealistic burden on the simulation with extra counted trips. Consequently, the static 5 

O-D was adjusted to estimate the dynamic O-D.  6 

Dynamic O-D Estimation 7 

A precise estimation of the dynamic O-D matrix is a vital part of the simulation calibration. Since 8 

the estimated static O-D only provides an average demand for each O-D pair per time slice of 9 

simulation, it is not sufficient to capture network dynamics. When the network is over-congested, 10 

and the average travel time of each trip is greater than the time interval used to estimate the static 11 

O-D, there will be excess vehicles still traveling in the network when the previous modeling time 12 

slice ends. These trips need to be deducted from the static O-D matrices for the following modeling 13 

time slice. Dynamic O-D is a time-dependent O-D matrix that avoids over-estimating demand to 14 

account for the variation in traffic conditions over the analysis period.  15 

Since INTEGRATION can trace the status of each vehicle every decisecond, it is possible 16 

to identify the trips retained by the end of the previous simulation time slice and remove those trips 17 

from the O-D matrix for the next time slice. A novel approach for estimating the dynamic O-D 18 

matrix from the static O-D matrix was used in this study. Using the static O-D matrix estimated 19 

by QueensOD as the starting point, several simulation runs were conducted for each analyzing 20 

time slice. Details of this dynamic O-D estimation can be found in Yang and Rakha [42]. Equation 21 

(2) was used for the estimation of dynamic O-D:  22 

{
𝑇𝑖𝑗

𝑡 ′
= 𝑇𝑖𝑗

𝑡 − 𝛼𝐸𝑅𝑖𝑗
𝑡−1     ∀ 𝑇𝑖𝑗

𝑡 ≥ 𝐸𝑅𝑖𝑗
𝑡−1

𝑇𝑖𝑗
𝑡 ′

= 𝑇𝑖𝑗
𝑡        ∀ 𝑇𝑖𝑗

𝑡 < 𝐸𝑅𝑖𝑗
𝑡−1

,                (2) 23 

 24 

where  25 
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 𝑇𝑖𝑗
𝑡 ′

 is the updated trip number between origin 𝑖 and destination 𝑗 for time slice 𝑡; 1 

 𝑇𝑖𝑗
𝑡  is the original static demand between origin 𝑖 and destination 𝑗 for time slice 𝑡; 2 

𝐸𝑅𝑖𝑗
𝑡−1 is the en-route trips between origin 𝑖 and destination 𝑗 at the end of time slice 𝑡 − 1; and 3 

𝛼 is the user-defined adjustment factor. 4 

On average, the resulting dynamic O-D reduced the static O-D by 5% to 10%. 5 

Network Division and Demand Splitting  6 

INTEGRATION and the QueensOD software are built in FORTRAN to take advantage of its 7 

computational speed when dealing with large matrices. To maximize the simulation speed, both 8 

INTEGRATION and QueensOD are based on a set of shared modules with a set of shared static 9 

arrays. These shared static arrays define the size of the network and are statically allocated by the 10 

operating system. When working with a large network, these static arrays create an important 11 

limitation because the Windows operating system does not allow FORTRAN to allocate more than 12 

2 GB in both the X86 and X64 architectures when using static arrays. Unfortunately, 2 GB is not 13 

sufficient for the large network in this study. To increase the memory allocation in Windows, it is 14 

necessary to use the 64-bit Windows version and to use dynamic arrays instead of static arrays. 15 

Currently, the majority of the machines are based on X64 architecture and run 64-bit Windows.  16 

To overcome the above memory limitation and computational obstacle, the network was 17 

partitioned into five sub-networks, as shown in FIGURE 3. Accordingly, the network file (nodes, 18 

links, signals, and other input files) and the demand file need to be divided. The entire area was 19 

partitioned considering the similarity of the traffic conditions. For example, sub-network 3 20 

includes the most congested downtown area. While it is relatively easy to divide the network files 21 

(the polygon file of the sub network is overlaid on top of the network links and nodes to identify 22 

links and nodes for each sub-network), the division of the demand file is more difficult since it 23 

involves the identification of routes to be used by each particular O-D pair. Fortunately, along with 24 

the global demand file generated using QueensOD, a tree file describes the up to five paths used 25 

by each O-D pair and the corresponding proportion of the O-D pair using the path. This tree file 26 

identifies the link-by-link route between each origin and destination. Up to five trees were 27 

generated during the static O-D estimation, and each tree file was assigned a weighting value. The 28 

tree file and the associated weight value were used to partition the network demand. The global 29 

demand was disaggregated into sub-network demands. Whenever a trip went in or out of a sub-30 

network, it was broken into two individual trips, each occurring in a separate sub-network. The 31 

weight was used to distribute the trips between each O-D pair by routes recorded in the tree file. 32 

The origin and destination along with the time stamp of that trip was then written into a sub-33 

network O-D matrix for that particular sub-network. The global demand O-D matrix was therefore 34 

disaggregated into five sub-groups.  35 

The statistics for the resulting sub-network input files are given in TABLE 2. Each sub-36 

network had 100–400 zones, 1,700–3,500 links, and 600–1,600 nodes. Traffic for three hours 37 

around the morning peak (7 am to 10 am) with one hour of preloading (6 am to 7 am) and three 38 

hours around the afternoon peak (4 pm to 7 pm) with one hour of preloading (3 pm to 4 pm) were 39 

simulated for the network. Approximately 2.1 and 2.3 million vehicles were simulated in the 40 

morning and afternoon peaks, respectively.  41 
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 1 
FIGURE 3 Network Partitioning 2 

 3 

TABLE 2 O-D Pairs and Number of Trips 4 

 Sub-

network 1 

Sub-

network 2 

Sub-

network 3 

Sub-

network 4 

Sub-

network 5 

Links 1,700 2,250 3,500 1,700 1,500 

Nodes 740 1,000 1,600 740 650 

Zones 145 199 405 234 195 

AM O-D Pairs 

(Number of Trips) 

44,000 

(400,000) 

220,000 

(430,000) 

270,000 

(530,000) 

97,000 

(450,000) 

105,000 

(370,000) 

PM O-D Pairs 

(Number of Trips) 

40,000 

(430,000) 

192,000 

(440,000) 

260,000 

(590,000) 

95,000 

(480,000) 

91,000 

(390,000) 

CALIBRATION AND SIMULATION RESULTS 5 

The calibration and simulation process involved iterations of running simulations, comparing the 6 

results with observed data, and modifying the parameters of the input files and embedding models 7 

to ensure the accuracy of the simulation results. Since INTEGRATION has been carefully 8 

calibrated for its embedded car-following, gap acceptance, and route choice models in multiple 9 

previous studies conducted by the authors, the calibration in this study only focused on adjustment 10 

of input parameters.  11 
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Modified parameters included speed, number of lanes, signal timing plans, and roadway 1 

lane striping. Because the simulation network did not include some of the lowest hierarchical roads 2 

that indeed distribute major traffic flow due to their special locations in certain highly populated 3 

areas (e.g., the University of California, Los Angeles or the Los Angeles International Airport), 4 

the network configuration in the simulation environment needed to be adjusted to accommodate 5 

for concentrated traffic flow using alternative minor roads. Accordingly, the traffic signal timings 6 

and other network parameters were adjusted during the calibration process.  7 

The simulation results for each simulated hour were compared against the traffic count 8 

data. Since the observed traffic volumes themselves are not fixed values, the following procedures 9 

were adopted to evaluate the simulation results: 10 

1. Twenty days of typical workday data (Tuesdays and Wednesdays) were randomly 11 

extracted from PEMS;  12 

2. The median traffic volume was calculated for every hour in the morning peak (7 am to 10 13 

am) and afternoon peak (4 pm to 7 pm);  14 

3. The R-value for each day of observed data with respect to the median value was 15 

calculated;  16 

4. The lowest R-value, which reflects the largest possible fluctuation in observed traffic 17 

volume, was identified as the baseline for comparison;  18 

5. The simulation runs were conducted, and simulated traffic volumes were extracted from 19 

links that are listed as the locations where the loop detectors are placed. 20 

6. The R-value for the simulated traffic volume and the median observed traffic count data 21 

was calculated.  22 

These two sets of R-values are listed in TABLE 3. As can be seen from the table, all the 23 

sub-networks had comparable R-values for the simulation results and the observed volumes. This 24 

indicates that the temporal variation in observed traffic volume is in the same range as the 25 

difference between the simulated traffic volume and the median traffic volume. The results 26 

indicate that the simulation accurately modeled the traffic conditions in the modeling area.  27 

TABLE 3 Calibrated Simulation Results 28 

 Sub-network 1 Sub-network 2 Sub-network 3 Sub-network 4 Sub-network 5 

Time Sim-R Obs-R Sim-R Obs-R Sim-R Obs-R Sim-R Obs-R Sim-R Obs-R 

7 – 8 

AM 0.88 0.91 0.93 0.92 0.93 0.95 0.90 0.90 0.95 0.96 

8 – 9 

AM 0.85 0.90 0.94 0.81 0.93 0.95 0.95 0.86 0.94 0.95 

9 – 10 

AM 0.86 0.92 0.91 0.88 0.94 0.91 0.90 0.95 0.95 0.95 

4 – 5 

PM 0.88 0.93 0.96 0.88 0.91 0.95 0.86 0.96 0.92 0.96 

5 – 6 

PM 0.88 0.93 0.96 0.93 0.89 0.95 0.82 0.97 0.95 0.97 

6 – 7 

PM 0.71 0.90 0.95 0.95 0.90 0.95 0.84 0.96 0.94 0.97 

 29 
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DISCUSSION AND CONCLUSIONS 1 

Microscopic simulation is a powerful tool for traffic studies. It is widely used in both academic 2 

research and practice by transportation administration agencies. The main limitation of 3 

microscopic simulation is associated with its primary advantage: being able to record the details 4 

of simulated vehicles including car-following, shockwave propagation, lane-changing behavior, 5 

and other data needed for in-depth traffic analysis. This level of detail creates a huge challenge 6 

related to the computational capabilities of computers. A common solution to this problem is 7 

distributed parallel processing, which can be expensive and complicated. While simplifying the 8 

network by selecting only skeleton arterials can also help, it sacrifices valuable information needed 9 

for research and traffic administration.  10 

This study solves the problem by dividing a large-scale network into sub-networks and 11 

simulating each sub-network individually. In addition, this paper discusses the methods used to 12 

improve the accuracy of input data by integrating multiple network input sources, calibrating vital 13 

input network parameters, and estimating reliable dynamic O-D matrices from a static O-D matrix. 14 

The methodology and simulation results reported in this study are significant for the following 15 

reasons:  16 

1) The methodology used to construct a large-scale network and calibrate network 17 

parameters is general in nature and thus are transferable. 18 

2) The data sources used to estimate the O-D demand are easy to access. Planning data and 19 

observed traffic count data on freeways and major arterials are generally accessible. By 20 

combing these two data sources, QueensOD and INTEGRATION can be used jointly to 21 

accurately estimate dynamic O-D matrices.  22 

3) Divide a large network into small sub-networks eases the calibration process and the 23 

computational burden of microscopic simulation. By simulating sub-networks in parallel, 24 

applying microscopic simulation to large networks is no longer infeasible.  25 

4) The size of the network and demand modeled in this study is unprecedented.  Previous 26 

studies using microscopic simulation only modeled either a smaller area or a simpler 27 

network with less vehicles.  28 

5) The simulation results are highly accurate. The deviation of simulation results from the 29 

median values of observed traffic volume was comparable to the variation in observed 30 

traffic volumes themselves.  31 

There are issues that were not discussed in this paper and are worthy of additional 32 

investigation. For example, the synchronization of the trips that travel across sub-networks is a 33 

separate research topic that will be done via a traffic simulation controller that will monitor and 34 

track vehicles across all networks. The traffic simulation controller is currently under 35 

development. 36 
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