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Abstract

In order to collaborate with people in the real world, AI sys-
tems must be able to represent and reason about spatial re-
gions in human environments. Consider the command “go
to the front of the classroom”. The spatial region mentioned
(the front of the classroom) is not perceivable using geom-
etry alone. Instead it is defined by its functional use, im-
plied by nearby objects and their configuration. In this pa-
per, we define such areas as context-dependent spatial re-
gions and present a system able to learn them by combin-
ing qualitative spatial representations, semantic labels, and
analogy. The system is capable of generating a collection
of qualitative spatial representations describing the configu-
ration of the entities it perceives in the world. It can then be
taught context-dependent spatial regions using anchor points
defined on these representations. From this we then demon-
strate how an existing computational model of analogy can be
used to detect context-dependent spatial regions in previously
unseen rooms by transferring the necessary anchor points. To
evaluate this process we compare detected regions to annota-
tions made on maps of real rooms by human volunteers.

1 Introduction
Consider a janitorial robot cleaning a classroom. While per-
forming this task, it encounters a teacher working with a stu-
dent. The teacher tells the robot to “start at the front of the
classroom”, expecting it to go to the front of the classroom
and begin cleaning that area. This response requires that
the robot is able to determine the spatial region in the envi-
ronment that satisfies this concept. Moving from the metric
space of the robot’s sensors to the symbolic space required
for reasoning and language is an important problem for qual-
itative reasoning.

The ability to understand and reason about spatial regions
is essential for AI systems performing tasks for humans in
everyday environments. Some regions, such as whole rooms
and corridors, are defined by clearly perceivable boundaries
(e.g. walls and doors). However, many regions to which hu-
mans routinely refer are not so easily defined. Consider, for
example, the aforementioned region the front of the class-
room. This region is not perceivable using just the geome-
try of the environment. Instead, it is defined by the objects
present in the room (chairs, a desk, a whiteboard), their role

in this context (seats for students to watch a teacher who
writes on the whiteboard) and their configuration in space
(the seats point toward the whiteboard). We refer to such
regions as context-dependent spatial regions (CDSRs).

Current AI systems are not capable of representing and
reasoning about CDSRs, yet it is an important ability. If AI
systems are to collaborate with humans in everyday environ-
ments then they must be able to understand and refer to the
same spatial regions humans do. Many regions are best de-
fined in a context-dependent manner, for example, a kitchen
in a studio apartment, an aisle in a church or store, behind
enemy lines in a military engagement, etc. In order to repre-
sent and reason about such regions, cognitive systems must
integrate different types of information, including geomet-
ric, semantic, and functional knowledge. Qualitative repre-
sentations provide a symbolic abstraction that is a natural
method for integrating these different types of knowledge in
reasoning tasks.

This paper presents an artificial cognitive system (specifi-
cally a mobile robot) able to represent and reason about CD-
SRs. Central to our approach is the use of anchor points,
symbolic expressions which link conceptual entities (e.g.,
CDSRs) to perceived entities (e.g., objects in the environ-
ment). Our approach is founded on two assumptions. The
first assumption is that CDSRs can be defined using quali-
tative spatial representations (QSRs) corresponding to sen-
sor data of the system (Cohn and Hazarika 2001). The sec-
ond assumption is that semantically and geometrically sim-
ilar areas (e.g. two different classrooms) will feature sim-
ilar CDSRs, and that these similarities can be recognised
through analogy. The rest of the paper is structured follow-
ing these assumptions. Section 2 describes how we gen-
erate QSRs from sensor data taken from an existing, state-
of-the-art, cognitive system and use these to define CDSRs
with anchor points. Section 3 then describes how we use
the structure-mapping model of analogy (Gentner 1983) to
transfer a CDSR from a labelled example to a new situation.
Section 4 presents a worked example of the entire process,
and Section 5 evaluates our system in comparison to data
from human subjects performing the same task.



2 Metric to Qualitative Representations
The context which defines a CDSR is a combination of the
functional and geometric properties of a room, i.e. what can
be done there and where. In this work we implicitly repre-
sent context using the types of objects present in a room and
their location relative to each other. The following sections
describe how we construct symbolic representations of these
ingredients of context from robot sensor data.

2.1 The Dora System
We base our work on Dora, a mobile cognitive robot with
a pre-existing multi-layered spatial model (Hawes et al.
2011). In this paper, we draw on the metric map from
this model. For more information on Dora’s other com-
petences, see recent papers, e.g. (Hawes et al. 2011;
Hanheide et al. 2011).

Dora’s metric map is a collection of lines in a 2D global
coordinate frame. Two example maps are pictured in Fig-
ure 4. Map lines are generated by a process which uses
input from the robot’s odometry and laser scanner to per-
form simultaneous localization and mapping (SLAM). Lines
in this SLAM map represent features extracted from laser
scans wherever a straight line is present for long enough to
be considered permanent. In practice, lines are generated at
the positions of walls and any other objects that are flat at the
height of the laser (e.g. bins, closed doors etc.). The robot’s
location in the metric layer is represented as a 2D position
plus an orientation.

Dora is capable of using vision to recognize pre-trained
3D object models. Recognition can either be triggered
through autonomous visual search or at a user’s command.
When an object is detected it is represented in the metric
map by placing a copy of the model at the detected pose.
The recognizer associates each object with a semantic type
that was provided during a training phase.

To enable us to generate a range of different evaluation
situations in a reasonable length of time, we have gener-
ated data from Dora in both real rooms and in simulation.
Simulation is performed using the Player/Stage hardware
abstraction layer (Gerkey, Vaughan, and Howard 2003) al-
lowing us to run the system mostly unchanged in a pre-
defined environment. Also, to enable us to detect a wider
range of objects than is usually possible (from armchairs to
whiteboards), we used a simulated object recogniser in all
runs. The recogniser was configured with types and posi-
tions of objects in the environment and was guaranteed to
detect them when the robot was orientated towards them.
This eliminated any errors from the recognition process, but
was still influenced by errors in robot localisation.

2.2 Qualitative Spatial Representation Extraction
For each object that Dora detects we compute the strengths
of 8 spatial relations between that object and each of the ob-
jects adjacent to it; adjacency is determined using a voronoi
diagram, as is standard in geometric reasoning (Forbus,
Usher, and Chapman 2003). The strength of a computed
relation for a given pair of objects represents the applica-
bility of that relation to the pair. Strength ranges from 0

to 1, with 0 being unsuitable. The model used to compute
these relations was inspired by the literature on modeling
the semantics of spatial terms (Kelleher and Costello 2009;
Kelleher and van Genabith 2006; Regier and Carlson 2001;
Gapp 1994). The model accommodates both direction and
distance as factors in the relative position of objects.

The relations we compute between each given landmark
object and its adjacent neighbours are analogous to the car-
dinal and intermediate points on the compass when the
compass is centered on the object. The canonical direc-
tions of these relations are defined using the following
vectors: 〈0, 1〉, 〈1, 1〉, 〈1, 0〉, 〈1,−1〉, 〈0,−1〉, 〈−1,−1〉,
〈−1, 0〉, 〈−1, 1〉. The predicates used to denote these rela-
tions are named accordingly, e.g. xZeroYPlus, xPlusYPlus,
xPlusYZero, xPlusYMinus, etc.

We generate the strengths of these spatial relations as fol-
lows. First we compute the maximum distance dmax be-
tween any two points in the room, this value is used to nor-
malize the distances between objects. Next, taking each ob-
ject in turn to be the landmark, we translate the origin of the
room to the landmark’s centroid. This results in the coordi-
nates of all the other objects in the room being translated into
a frame of reference whose origin is the centroid of the land-
mark. We then compute the strength of each of the 8 spatial
relations between the landmark and each of the objects ad-
jacent to it by calculating: (a) the distance d between the
landmark’s centroid and the adjacent object’s location, and
(b) the inner angle θ between the direction vector of the rela-
tion and the vector from the origin (the landmark’s centroid)
to the neighbour’s location. These two spatial components
are integrated to compute the strength s of a given relation-
ship using Equation 1. Figure 1 provides a visualization of
a spatial relationship across a region.

s =

{ (
1− θ

90

)
∗
(

1− d
dmax

)
if θ ≤ 90◦

0 otherwise
(1)

These spatial relationships between adjacent objects pro-
vide the structure necessary for analogical processing. Gen-
erating the relationships in this way (as opposed to, for ex-
ample, simple coordinate-based thresholding) has the advan-
tage that the presence and absence of relationships is repre-
sented on a continuous scale. While similar to the relation-
ships used in fuzzy qualitative trigonometry (Liu, Coghill,
and Barnes 2009), our approach includes distance as well as
angle into the weight computation. Weighted relationships
provide our representations with the flexibility necessary to
manage the variation in perceptual information (i.e. the posi-
tion of walls and objects) inevitable in human environments
and robot perception.

In addition to spatial relations, we also create grouping
entities from the robot sensor data. Grouping entities collect
together sets of adjacent objects of the same type. For ex-
ample, a classroom would likely have a group entity created
in which all of the students’ desks were members.

2.3 Representing CDSRs
We use anchor points (Klenk et al. 2011) to define the
boundaries of CDSRs. Anchor points are symbolic descrip-



Figure 1: A visualisation of a the strength of a spatial re-
lation across a region. The landmark is the red square and
the direction vector used was 〈0, 1〉 (i.e. above of the land-
mark). The lighter the pixel the stronger the spatial relation
is deemed to be at that point.

tions which link a conceptual entity to a perceived entity.
The perceived entities we use are the objects recognised
by Dora, and the room itself. The room representation is
created by putting a convex hull around the lines in Dora’s
SLAM map. Anchor points are created from perceived enti-
ties using unary functions, e.g. (XMaxYMostFn Desk1)
represents the point on the Desk1 with the largest x coordi-
nate taken from the set of points with a y coordinate within
5% of the maximum y coordinate. Anchor points are linked
to particular CDSRs using a boundarySegment ternary
relation. After we have defined the boundary of the region,
we assign it a semantic label using the regionType re-
lation. Therefore, each CDSR has one type and a variable
number of boundary segments.

(regionType CDSR9 FrontRegion)

(boundarySegment CDSR9

(YMaxXFewestFn Room3)

(YMinXFewestFn Room3))

(boundarySegment CDSR9

(YMinXFewestFn Room3)

(YMinXFewestFn Group1))

Figure 2: Three of the five expressions representing the front
of the classroom context-dependent region CDSR9

Figure 2 contains three of the five expressions defining the
front of classroom Room3 which is pictured in the top of
Figure 4. The boundary segments (shown in orange in Fig-
ure 4) define the extent of the region. (YMaxXFewestFn
Room3) and (YMinXFewestFn Room3) are the points
with the highest and lowest y coordinate out of the set of
points within 5% of the minimum x coordinate of Room3.
The next segment connects the lower left coordinate in
the figure to the (YMinXFewestFn Group1), where
Group1 includes the eight desks. There are two more
boundary segments completing a polygon for this region.
The semantic label FrontRegion ties this polygon to a
conceptual region, “the front of the room”. This definition
for the front of the room is specific to Room3 and its en-
tities. It is clearly context-dependent because its extent is

dependent on the arrangement of the anchor points used to
define its boundary. If the desks were in a different position
then the region would cover a different extent (e.g. if they
were further to the left then the region would be smaller).

3 Analogical Transfer of Spatial Regions
We assume that a cognitive system will have a way of ini-
tially acquiring examples of CDSRs, e.g., by being taught
through dialogue, sketching, or hand-coding. To avoid bur-
dening potential users with the task of teaching the system
every CDSR individually, it is desirable for a cognitive sys-
tem to be able to automatically recognize similar regions af-
ter initial training. For example, after a janitorial robot has
been taught where the front of one classroom is, it should be
able to identify the fronts of other classrooms in the building.
Our system uses analogy to solve this problem. We chose
this approach because analogy has been previously used to
successfully combine semantic and geometric information
in spatial reasoning tasks (Lockwood, Lovett, and Forbus
2008).

Analogy is an essential cognitive process. In humans,
analogical processing has been observed in language com-
prehension, problem-solving, and generalization (Gentner
2003). The structure-mapping theory of analogy and sim-
ilarity postulates this process as an alignment between
two structured representations, a base and a target (Gen-
tner 1983). We use the Structure-Mapping Engine (SME)
(Falkenhainer, Forbus, and Gentner 1989) to perform ana-
logical matching in our system. Given base and target rep-
resentations as input, SME produces one or more mappings.
Each mapping is represented by a set of correspondences
between entities and expressions in the base and target struc-
tures. Mappings are defined by expressions with an identi-
cal relation and corresponding arguments. When provided
with expression strengths, such as, our spatial relationships,
SME prefers mappings with closely aligned fact strengths.
SME can be given pragmatic constraints that require certain
entities in the base to be included in the mapping. Map-
pings also include candidate inferences which are conjec-
tures about the target using expressions from the base which,
while unmapped in their entirety, have subcomponents that
participate in the mapping’s correspondences. SME oper-
ates in polynomial time, using a greedy algorithm (Forbus,
Ferguson, and Gentner 1994).

Figure 3 illustrates a sample mapping between six
base expressions and three target ones. Each oval rep-
resents a predicate, and the entity arguments are rep-
resented by squares. SME generates a mapping be-
tween the base expressions (group Desk1 Desk2) and
(xMinusYZero Desk1 Desk2), and the target expres-
sions (group Desk11 Desk12) and (xMinusYZero
Desk11 Desk12) as well as between the regionType
expressions in each case in the following manner. First,
the predicates of these expressions are placed in correspon-
dence, as identical predicates are preferred by SME. Then
SME aligns the arguments of the aligned predicates, Desk1
with Desk11, Desk2 with Desk12, and CDSR1 with
CDSR2. While there is another XMinusYZero statement
in the base about two desks, it cannot correspond to either of



Figure 3: Analogical mapping between six base expressions
and three target expressions.

the target expressions in the same mapping due to the one-
to-one constraint in SME which allows each element in the
target to map to at most one element in the base and vice
versa. In Figure 3, the correspondences are highlighted by
the hashed bi-directional arrows. Next, SME creates a candi-
date inference for the boundary segment expression, because
both the mapped Group and regionType predicates par-
ticipate in the mapping. The candidate inference is shown
in red in the figure. Note that inference is selective, with
no candidate inferences generated for the entirely unmapped
expressions.

In our system, the base and target representations consist
of the entities Dora has perceived in two different rooms, the
QSRs between them and any groups that have been identi-
fied. The base also contains a labeled CDSR of the type
sought in target. The result of running SME on these rep-
resentations is a set of correspondences between the base
and target, and a set of candidate inferences about the tar-
get. We use these to transfer the CDSR from base to target
(i.e. recognizing the CDSR in the target) as follows. First,
we identify the CDSR of the sought type in the base and
use SME’s pragmatic constraints to ensure that the entities
referred to by its anchor points participate in the mapping.
For example, if the CDSR in the base included the anchor
point (YMaxXMostFn Desk1), then we would include a
constraint requiring Desk1 participate in the mapping. To
transfer the CDSR to the target, we collect the candidate in-
ferences that result from boundarySegment statements
mentioning the base CDSR. The second and third arguments
of these candidate inferences are anchor points in the tar-
get environment. We use these anchor points to define the
boundary of the CDSR in the target.

4 Example System Run
To elucidate the workings of our system, we now present an
example of how it can transfer a CDSR describing the front
of a known classroom (the base) to a new classroom (the
target).

We first create the base and target representations by run-

Figure 4: Maps of 2 real classrooms generated by our sys-
tem. The lines around the perimeter are walls, the unfilled
polygons are the outlines of objects and the filled polygons
are CDSRs. The maps show an expert-annotated CDSR
(red, top image), a subject-annotated CDSR (blue, bottom
image) and a CDSR transferred by analogy (green bottom
image). The classroom used to generate the bottom class-
room is pictured in Figure 5.

Figure 5: One of the classrooms used in our evaluation. This
image was presented to subjects who were asked to annotate
a copy of the image in the bottom half of Figure 4. The inset
shows a screenshot from the data collection webpage.



ning Dora in the two different classrooms. In each case,
Dora is manually driven around the room to allow it to cre-
ate a metric map. Once the map is created, Dora is then
positioned such that the objects are observable and the vi-
sual recognition system is run. The map and object data that
result from this are then passed on to the QSR generator.
The base and target maps are pictured in the top and bottom
of Figure 4 respectively. In the base case, Dora perceives 8
individual desks, a group entity containing these desks and
the room area. To this we add the CDSR representing the
front of the room. The case includes a total of 50 expression
relating the 20 entities. Six of these expressions are used to
define the boundary segments and CDSR representing the
front of the room. The target case includes 26 expressions
and 11 entities.

SME generates an analogy between the base and target
cases enabling the transfer of the symbolic description of the
front of the room to the new situation requiring Room3 and
Group1 participate in the mapping as they are referenced
by the anchor points in the base. The resulting analogy in-
cludes 26 correspondences between the entities and expres-
sions and 32 candidate inferences. Four of these candidate
inferences define the CDSR in the target with anchor points
defined on the room and the group of desks in the target.
The green region in the lower image of Figure 4 illustrates
the transferred CDSR.

5 Evaluation
To evaluate our progress toward building a cognitive system
capable of reasoning about CDSRs, we conducted the an ex-
periment focusing on the following questions:

• Are anchor points able to encode context-dependent spa-
tial regions?

• When provided with a base representation containing a
labelled CDSR, how well does our approach identify the
CDSR in a given target?

5.1 Materials
We evaluated our approach on six classrooms (two simu-
lated and four real) and two simulated studio apartments.
The simulated rooms were based on real-life counterparts.
For each room we manually encoded appropriate CDSRs
that could be represented by our approach. For the class-
rooms these were the front and back, and the front and back
rows of desks. For the studios these were the kitchen, of-
fice and living areas. These manually encoded regions were
used as the base CDSRs for analogical transfers, and can be
considered the training data for our evaluation.

To determine how people define CDSRs, we asked three
naı̈ve users to draw polygons for each region type for each
room. This task was performed using a webpage on which
each user was presented with an image of the real room plus
an image of the map data generated by the robot onto which
the drawing could be done. The webpage1 is shown in the
inset in Figure 5. The user-defined polygons define the tar-
get regions against which we evaluate our transfers.

1http://home.csumb.edu/k/katherinelockwood/world/

We consider a problem instance to be a room and a sought
CDSR type. For each room containing a manually encoded
CDSR of the sought type, we generate a transferred region
using analogical transfer. To assess the quality of the trans-
fer, we calculate precision (p, the proportion of the trans-
ferred region that overlaps with the target region) and recall
(r, the proportion of the target region that overlaps with the
transferred region) as follows:

p =
area(transferred region ∩ target region)

area(transferred region)
(2)

r =
area(transferred region ∩ target region)

area(target region)
(3)

Using this approach we generate results showing the
matches between each of the following pairs of regions:
the transferred region and the appropriate target region; the
CDSR we manually encoded for the target room and target
region; and the region for the whole room and the target re-
gion. Results comparing transferred and target regions mea-
sure how well our system is able apply a single example to
new situations. The comparisons between the manual an-
notations to the target regions measure how well the anchor
points we chose capture the users’ regions (who were not
constrained to anchor points). Results from the whole room
regions provide a baseline performance for comparison.

5.2 Results
To assess overall performance, Table 1 summarizes the re-
sults across all problem instances against user-defined tar-
get regions from three different users. The transferred re-
gions achieved a precision of .47 (σ=.37) and a recall of .46
(σ=.38). Comparing the manually encoded regions against
each target region results in a mean precision of .71 (σ=.30)
and recall of .67 (σ=.25). The region defined by the room
corresponds to the target region with a precision of .17
(σ=.11) and recall of .98 (σ=.05).

To identify how our approach fairs under different condi-
tions, Table 2 separates the results by CDSR type. The mean
precision for the transferred regions ranged from .76 for the
front rows of classrooms to 0 for the office in studio apart-
ments. Comparing manually encoded against target regions
resulted in a minimum mean precision of .60. This occurred
for the front of the classroom. The whole room precision,
which is directly proportionally to the size of the target re-
gion, varied from .08 for the office to .35 for the living area.

5.3 Discussion
These results support the hypothesis that anchor points can
provide a symbolic representation on top of sensor data for
context-dependent spatial regions, and, when combined with
qualitative spatial relations, they facilitate learning from a
single example through analogical transfer. Collaboration
with human users requires a high precision and recall, be-
cause cognitive systems must be able to understand as well
as refer to these regions in human environments. Conse-
quently, the high manually encoded precisions and recalls



Transferred Manually Encoded Entire Room
p̄=.47 σ=.37, r̄=.46 σ=.38 p̄=.71 σ=.30, r̄=.67 σ=.25 p̄=.17 σ=.11, r̄=.98 σ=.05

Table 1: Overall Performance Compared Against Target Regions Defined by Three Users

Region Transferred Manually Encoded Entire Room
Front p̄=.32 σ=.33, r̄=.49 σ=.41 p̄=.60 σ=.29, r̄=.83 σ=.19 p̄=.16 σ=.10, r̄=1 σ=0
Back p̄=.44 σ=.37, r̄=.56 σ=.41 p̄=.66 σ=.25, r̄=.84 σ=.17 p̄=.11 σ=.06, r̄=.99 σ=.03

Front Rows p̄=.76 σ=.27, r̄=.28 σ=.21 p̄=.83 σ=.31, r̄=.50 σ=.11 p̄=.22 σ=.08, r̄=1 σ=0
Back Rows p̄=.72 σ=.30, r̄=.42 σ=.26 p̄=.80 σ=.29, r̄=.43 σ=.26 p̄=.19 σ=.06, r̄=1 σ=0

Kitchen p̄=.60 σ=.05, r̄=.59 σ=.34 p̄=.78 σ=.20, r̄=.71 σ=.13 p̄=.16 σ=.02, r̄=.92 σ=.13
Office p̄=.00 σ=.00, r̄=.00 σ=.00 p̄=.78 σ=.29, r̄=.55 σ=.20 p̄=.08 σ=.03, r̄=.94 σ=.06

Living Room p̄=.40 σ=.39, r̄=.01 σ=.01 p̄=.63 σ=.34, r̄=.54 σ=.13 p̄=.35 σ=.22, r̄=.96 σ=.06

Table 2: Performance by Region Type

indicate that the defined anchor points are a reasonable start-
ing point for a symbolic representation. Our future work
seeks to further evaluate the utility of this representation by
employing it in collaborative tasks with human users.

The transferred regions were considerably more precise
(.47) when compared to the room as whole (.17), and their
recalls (.46) indicate that they captured almost half of the
area indicated by the human user. As we create CDSRs
using anchor points defined on perceived entities, our ap-
proach performs best when the boundary of the target CDSR
is closely tied to such entities. This is the case in the front
rows of the classroom, with p of .76 and .82 for the inferred
and the manually encoded regions respectively. The system
performs worst when the extent of the CDSR is defined as an
unbounded area near or around particular objects. The office
of a studio apartment is loosely defined as the region around
the desk. This motivates one direction of future work: ex-
panding the vocabulary of anchor points to better capture
these notions of space.

6 Related Work
Typical approaches to spatial representation for mobile
robots tend to focus on localization, and thus mostly rep-
resent the world uniformly without subdivision into mean-
ingful (semantic) units (Thrun 2003). When a more struc-
tured representation is required, many turn to Kuipers’ Spa-
tial Semantic Hierarchy (SSH) (Kuipers 2000). In that work,
Kuipers distinguishes between large-scale and small scale
space based on the robots sensor horizon. This distinc-
tion has proven useful for performing localization and map
building (Beeson, Modayil, and Kuipers 2010). CDSRs
differ from this approach by incorporating non-geometric
knowledge into the definition of regions. Whilst mobile
robots exist which can determine the type of a room from
the objects in it (Hanheide et al. 2010; Galindo et al.
2005), they only concern themselves with types of whole
rooms, and cannot represent regions within rooms. This
is also true for those systems which use some elements of
QSR (Aydemir et al. 2011). The need for an autonomous
system to ground references to human-generated descrip-
tions of space has been recognized in domains where a
robot must be instructed to perform a particular task, how-

ever existing systems are restricted to purely geometrically-
defined regions (Tellex et al. 2011; Dzifcak et al. 2009;
Brenner et al. 2007).

There is mounting evidence that analogy, operating over
structured qualitative representations, can be used to sim-
ulate a number of spatial reasoning tasks. Forbus et al.
showed that analogy between course of action diagrams
could be used to identify potential ambush locations in
new situations by focusing on only the relevant aspects of
sketched battle plans (Forbus, Usher, and Chapman 2003).
A core contribution of their work was the definition of a
shared similarity constraint between a spatial reasoning sys-
tem and its user; where users and spatial reasoning systems
agree on the similarities between situations. This has close
parallels to what we are trying to accomplish, where a cogni-
tive system is able to reason about context-dependent spatial
regions by identifying the same salient features as its hu-
man user. The anchor points in our work were originally
used in teaching a system how to solve problems from the
Bennett Mechanical Comprehension Test that require spatial
and conceptual reasoning. For example, identifying which
wheelbarrow will be more difficult to lift based on the rela-
tive locations of its loads as depicted in a sketch (Klenk et al.
2011). In that work, the anchor points defined the endpoints
of lines. We go beyond that result to use anchor points to
specify 2D regions.

7 Conclusion
In this paper, we illustrate how qualitative representations
enable the integration of geometric and semantic knowl-
edge required to reason about CDSRs. The system identifies
CDSRs in previously unseen environments through analogy
with a single example. Our system demonstrates a success-
ful integration of a range of technologies including vision,
SLAM, qualitative spatial reasoning and analogy to achieve
this task. In order to make this rich collection of compo-
nents work together, our work takes a number of short-cuts
that we plan to address with future work. These include a
reliance on the initial orientation of a room in a global co-
ordinate frame, the lack of a mechanism to retrieve relevant
rooms from memory (e.g. MAC/FAC (Forbus, Gentner, and
Law 1995)), and manually-encoding the CDSRs instead of



extracting them from sketched input. In addition, we must
complement our system development work with more com-
prehensive human studies assessing how people define and
use these regions as well as how well anchor points capture
them. Despite the preliminary nature of this work, our evalu-
ation demonstrates that the system is able to transfer CDSRs
that overlap with user-defined regions for 6 out of 7 region
types.
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