

Placing Qualitative Reasoning in the Design Process

Matthew Klenk, Daniel G. Bobrow, Johan de Kleer, John Hanley, Bill Janssen

Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto, CA, 94304

{klenk,bobrow,dekleer,hanley,janssen}@parc.com

Abstract

Design of physical devices to meet requirements involves
exploration of alternative configurations, and evaluation of
performance and tradeoffs. In addition to numeric analyses
and quantitative simulations, designers use qualitative
knowledge about components, devices, and contexts of use
to arrive at suitable designs. To put qualitative reasoning
into the hands of the designers, it is necessary to integrate
with existing design tools (e.g., OpenModelica) in a design
exploration environment. This environment provides access
to standard model libraries, and numeric simulation of fully
specified designs. Before selecting all parameters of a
design, the integrated qualitative verification we describe
can be used to determine if the design will meet
requirements for all, some, or no set of numeric parameters.
It can also identify derived requirements. Qualitative
verification can also be used to support design space
exploration through a tool that automatically generates
candidate designs and identifies promising designs. To
support detailed design, we demonstrate the automatic
extraction of guards, parameter inequalities that focus the
simulation toward desired outcomes.

Qualitative Reasoning and Design

The design of physical devices is a core task for

professional engineers in the automotive, aerospace, and

electronics industries. With crowd sourcing, design of such

devices is now also undertaken by amateurs around the

world. An example is the team at Wikispeed
1
, which is

designing a 100 mpg car in their free time. Improving

available tools by adding qualitative analysis should not

only reduce the amount of time required to create

innovative solutions, but also improve the final design.

 Qualitative reasoning has its roots in automating

reasoning about physical systems (Forbus 1984; de Kleer

& Williams 1992). Based on the intuition that engineers

employ qualitative reasoning extensively throughout the

design process, numerous researchers have sought to

exploit qualitative reasoning in the context of design

(Franke 1991; Iwasaki 1997; Everett 1999; Wetzel &

1 wikispeed.com

Forbus 2009). While producing advances in qualitative

reasoning, these approaches have fallen short of affecting

the design process in practice because they have not

worked well with existing design tools, a notable exception

is the AutoSteve (Struss & Price 2003). Our goal is to build

a better design exploration environment by integrating

qualitative analysis with existing software tools and

libraries for graphical construction and simulation of

designs. Therefore, we hope to support designers with

qualitative reasoning techniques enabling them to identify

more potential pitfalls, consider a broader range of designs,

and guide detailed design.

 Verification is the process of proving a design meets

certain requirements. Given a design with unspecified

parameters and a context of use, qualitative verification

performs qualitative simulation to determine if the design

meets a set of requirements for all, some, or no choices of

component parameters. In this paper, we show how the

results of qualitative verification support automated design

space exploration and detailed design. By filtering

automatically generated topologies qualitatively, we reduce

the space of topologies under consideration. When

qualitative verification indicates some possible failures,

and some potentially successful designs, we use the

envisionment to infer parameter inequalities, or guards,

that prevent the failure behaviors from occurring. These

guards provide guidance for a more fully specified design.

For example, a design of an electrical circuit may meet

requirements only when the voltage of a power source is

greater than the turn on voltage of a diode.

 This paper is organized as follows. In the next section,

we discuss our efforts in creating a design exploration

environment by integrating with OpenModelica, an open

source simulation system that supports the standard

modeling language, Modelica. This is followed by a

discussion of qualitative verification and an illustrative

example identifying potential design problems. Next, we

present an automatic design space exploration system that

uses qualitative verification to filter topologies. This is

followed by a discussion of our approach for automatically

extracting guards from feasible designs. We close with a

discussion of related and future work.

Design Exploration Environment

Designers currently use sophisticated tools for creating and

analyzing designs. To make qualitative analysis useful to

these designers, it needs to be easily accessible from a

standard tool. Consequently, we have been integrating

qualitative reasoning into OpenModelica
2
 (Fritzson 2004),

an open source Modelica modeling and simulation

environment. OpenModelica provides a graphical model

editor (shown in Figure 1) that is familiar to designers as

well as access to the Modelica Standard Library with over

1200 models.

Designers use OpenModelica to create models and

perform simulations. Models are created by selecting

components from the standard model library, and creating

connections between them. This is identical to the process

used in creating qualitative component models. Component

models in Modelica are defined by sets of ordinary

differential equations (ODEs) describing the constraints

among the parts of the components. Qualitative models

will have the same structure, except that they use

qualitative differential equations (QDEs) (Kuipers 1994) to

describe component behavior.

Both OpenModelica and qualitative simulators flatten

the component models to perform the simulation – that is

eliminate component boundaries, and create a single set of

(potentially optimized) equations that are then handled by

the simulation engine. For Modelica, this is a numeric

2 www.openmodelica.org

simulation. For qualitative simulation, the equations of

transformed into a set of constraints that determine the

temporal evolution of the system.

These parallels in system structure suggested two

approaches to us for integrating qualitative reasoning with

OpenModelica: (1) abstract component models, and (2)

extract equations produced by the OpenModelica compiler.

We describe each in turn.

Text-to-Text Translation of Component Models

Modelica defines declarative, acausal, discrete-continuous

hybrid models making it an appropriate input language for

qualitative simulation. To facilitate our ongoing automatic

translation efforts, we aligned our model construction

language (QML) with Modelica (see the corresponding

models in Figure 2). The composition of models occurs

through connections that are domain specific (e.g.,

electrical pins defined in the one port model). While each

model defines variables i and v, the Modelica variables

have ranges of real numbers, and the qualitative variables

have finite ranges defined by the quantity space for each

variable (Kuipers 1994). In Modelica, these variables are

differentiable and in our qualitative system each value

always has a qualitative derivative, or direction (e.g.,

increasing, steady or decreasing). These derivatives enable

their corresponding simulation engines to generate the

behavior of the system (Williams 1984). In each modeling

language, the composition of the models creates additional

constraints on the flow and effort variables of the models

governed by Kirchhoff’s laws.

Modelica QML
model Capacitor
 extends onePort;
 parameter Capacitance C;
 equation
 i = C * der(v);
 end Capacitor

(defprototype Capacitor
 :extends onePort
 :parameters ((C))
 :equations
 ((= i
 (* C (deriv v 1)))))

Figure 2: Qualitative capacitor model is a simple

transformation of the one in the Modelica Standard Library

One area where we differ from Modelica representation

concerns our use of modes instead of conditional

equations. Modes offer the following advantages: (1) they

localize the definition of hybrid behavior for the

component, and (2) they provide a natural way to model

various faulty behaviors.

(defprototype ideal-diode :extends (one-port)

 :variables ((v voltage :landmarks

 (Q0 OnVoltage)))

 :mode (off :entry ((= i Q0))

 :equations ((= i Q0)))

 :mode (on :entry ((= v OnVoltage))

 :equations ((= v OnVoltage))))

Figure 3: Diode model with two modes

To illustrate our modeling approach, Figure 3 contains

our definition of an ideal diode. We present this here in our

Figure 1: OpenModelica graphical connection editor

internal S-expression syntax, which highlights this

localization.
3
 This model is a subclass of the electrical one

port model, which defines two electrical connections, a

positive pin and a negative pin, and variables for the

current and voltage of the diode. The redefinition of the

voltage variable v is essential to create the quantity space

including Q0, representing 0V, and OnVoltage, representing

the turn on voltage for the diode. The diode has two modes,

off and on. The component is in a mode until the entry

conditions for another mode have been satisfied, in this

case, if the diode was off, the equation stating that no

current passes through the diode is enforced. This persists

until the instant when the voltage across the diode equals

OnVoltage, at which point the equation holding the voltage

constant is enforced, and current is no longer constrained

and can flow through the diode.

Using OpenModelica Compilation

In order for OpenModelica to perform numeric simulation,

it generates a single set of quantitative equations. As an

alternative to translating the component based model, we

have been exploring creating the qualitative constraints for

qualitative simulation by abstracting the equations

constructed by the OpenModelica Compiler. Using this

approach has two advantages over text-to-text transfer.

First, Modelica includes language constructs for supporting

complex model construction in its models, For example,

one can create a transformer with a parameter-defined

number of inductors. We did not want to support the text-

to-text interpretation of these constructs. The

OpenModelica compiler handles these as part of its

flattening process.. Second, the OpenModelica Compiler

does both algebraic simplification and index reduction as

part of the compilation process. Given the set of equations

produced by the OM compiler, we are often able to create

the set of constraints necessary to perform qualitative

simulation. There are still certain Modelica constructs that

we cannot handle – but we are gradually reducing the size

of this untranslatable set. So far, we have translated

equations from models with only continuous dynamics

such as RLC oscillators.

 Each of these approaches faces difficulties in the breadth

of operators available in Modelica. For example, Modelica

models may define arbitrary algorithms for computing

particular outputs. An important part of our future work is

systematically identifying which Modelica constructs can

be translated into qualitative models and understanding

how to treat those that can not.

3We have defined a standard template for expressing modes that is
acceptable to current Modelica compilers, but do not include it here.

Qualitative Verification

Qualitative simulation is possible very early in the design

process, before parameters are selected, when alternative

system topologies are being considered. Given a qualitative

model, an initial state, and a set of requirements,

qualitative verification determines if the design will satisfy

the requirements. In this section, we describe our

qualitative simulation algorithm, how we incorporate

requirements into the simulation, and provide an example

of qualitative verification using a vehicle ramp door.

Simulation

Qualitative simulation (de Kleer and Williams 1992), or

envisioning, is the process of projecting forward, from an

initial situation and a model, all possible qualitative states

that may occur. Our qualitative simulation algorithm

inherits largely from QSIM (Kuipers 1994). Given a state

(an assignment of qualitative values to each variable),

qualitative simulation computes possible successor values

for each variable and uses constraints to determine

combinations which make up consistent next state(s).

Consider a position variable that was between the Closed

and Open landmarks and moving toward Closed. There are

four possible successor values for this variable. Its value

may remain in the interval or reach the Closed landmark

and it may continue increasing or become steady (its

derivative stays positive or becomes 0).

Cyber-physical systems include dynamics that are

discrete as well as continuous (e.g., an input signal to open

the door, the changing of gears in a drive train, a diode

switching from off to on). We model such changes through

modes, which include an entry condition, new values for

some variables, and equations that are valid within that

mode. During simulation, discrete changes occur at

instants when mode entry conditions are satisfied. The

initial values and equations govern the behavior of

quantities in the following interval. The result of

qualitative simulation is a directed graph of states.

Requirements

Cyber-physical systems (CPS) need to satisfy many

requirements. Static requirements deal with the structure of

the object (e.g., a car must weigh less than 2500kg), and

can in general computed from the model. Behavioral

requirements deal with the response of the object during a

use case, or scenario. In general, these need to be verified

through simulation. Behavioral requirements may concern

a prohibited state of the system (e.g., where the engine

RPM exceeds its redline value) or undesirable sequences of

states during a trajectory (e.g., while traveling on level

terrain at constant velocity, the automatic transmission

should not chatter between gears). We use linear temporal

logic as a formal language for stating these requirements

on trajectories (Emerson 1990). If these requirements are

supplied to our qualitative simulation algorithm as success

and failure conditions, we terminate a trajectory in the

simulation if the condition is met. Because requirements

are composable (e.g., every engine has a redline speed

which should not be exceeded), it is possible to model

requirements as components within the system.

Requirement components include mode transitions to

modes named success or failure signaling the

envisionment algorithm to terminate the behavior.

After the envisionment graph has been created,

qualitative verification provides the following analysis. If

none of the trajectories violate requirements, then for all

consistent assignments of parameters, the system will

satisfy all requirements. That is, the system will not reach a

state that violates a safety requirement or transition along

an undesirable trajectory. If some trajectories violate

requirements and others do not, then the design may satisfy

the requirements with appropriate constraints on

component parameter values. In either case, detailed

design is required to determine the assignment of

parameter values that best fits the needs of the designer. If

all of the trajectories violate requirements, detailed design

is not necessary because no set of parameter values will

satisfy the requirement.

Verification Example: Vehicle door linkage

To illustrate qualitative verification, consider the door

system shown in Figure 5. The architectural model shows

quantity spaces for the positions of the piston that moves

the door, and the door itself. The system consists of a PD

controller, which uses position and velocity sensors from

the door; a piston, whose linear motion applies a torque on

the door; and the door slab itself, that rotates around a

bottom hinge. An input signal to the controller specifies the

desired next position for the door. This door angle has two

landmarks in the position quantity space, Closed and Open,

and the piston has one landmark on the linear position

quantity space, parallel, representing the angle where the

piston acts in parallel with the hinge. We will evaluate this

design against the requirements that the door should

always be able to be closed, and the door position should

always be between the door open and door closed position

inclusively. As a use case, we use a scenario in which the

door starts closed, and (1) the command is given to open

the door, and (2) when the door has reached the open

position, the command will be given to close the door.

Our system produces the envisionment shown in

Figure 4. The left pane shows the actual envisionment,

indicating that even for this simple system, there are many

states and trajectories. The simplified graph in the right

pane illustrates what the designer can learn from the

envisionment. In this use case, the design may reach a

successful situation (green node labeled SUCCESS). Red

nodes in the graph are qualitative states that violate

requirements. Appropriate parametric assignment will be

needed to ensure that trajectory for each failed state is

avoided.

Further analysis of the envisionment provides additional

guidance for detailed design. There is a terminal situation,

(node 6 in the simplified graph, cyan in the full graph), that

does not satisfy either the success or failure conditions of

the system. In the example, this state results from a

kinematic singularity in the piston door connection. That

is, when the acting angle of the piston is parallel to the

angle of the door, the piston produces no torque. While this

is part of the piston component model, it only leads to a

Figure 5: Architectural of the door system

Figure 4: The envisionment graph for the door system model produced by our system (left) and a simplified version for

presentation (right)

quiescent (terminal) state if the door is stationary at this

point. This unmarked dead-end state suggests the need for

an additional requirement to guide the designer to avoid

this state. This risk case would not become apparent in a

simpler use case; it requires one where the door first

opened and then closed. This indicates the need for careful

design of use cases.

Automated Design Space Exploration

Innovative design often requires a search for different

configurations of existing components (new topologies) to

achieve a specified functionality. This search space is

exponential in the number of components in the design.

Qualitative verification can help prune the design space in

two ways. By using qualitative models of components,

each qualitative component model corresponds to a many

possible quantitative components. Therefore, one

simulation can summarize many numerical experiments.

Secondly, when a qualitative simulation shows that no

choice of parameters will satisfy the requirements, that

topology can be eliminated from the search space. If there

is a feasible design, the envisionment can guide parameter

selection in a detailed design.

As an example of design space exploration, consider a

requirement for a system that turns on a light emitting

diode a short but perceptible time after a switch is turned

on. The available components include batteries, switches,

resistors, capacitors, inductors, and diodes. The topological

design space includes every configuration of these

components. To illustrate the utility of qualitative

verification, we describe a design space exploration tool

that searches the design space by taking one of the

following design actions: adding a component in parallel or

series with an existing component, removing a component,

or flipping a component in the circuit. Figure 6 illustrates

the starting design, which includes just a battery, switch

and diode.

Figure 6: Starting point for topological design space

exploration

After each design action, we build a qualitative model

and simulation for the current design candidate. Many

candidates are equivalent to shorted or open circuits. Our

system identifies them because their initial conditions are

inconsistent. If the design candidate has consistent initial

conditions, our system performs qualitative verification.

Consider a circuit with a resistor completing the circuit in

Figure 6. The envisionment of this will begin with both the

switch and diode off. It has two trajectories following the

instant the switch is turned on. In one, the diode is on, and,

in the other, the diode is off. The trajectory of the actual

system depends on the ordinal relationship between the on

voltage for the diode and the battery’s voltage. Because

neither of these trajectories satisfies the requirement that

there exists a delay before the light turns on, qualitative

verification eliminates this topology without considering

all possible combinations of battery voltages, resistances

and on voltages.

Figure 7: The envisionment on the right proves that the

topology on the left can satisfy the requirements

 Now consider the design in Figure 7. QRM produces an

envisionment with two trajectories. They are identical in

the interval after the switch is turned on, the capacitor is

charging and the voltage across the diode is increasing.

This interval terminates in one of two instants: (1) the

current ceases flowing into the capacitor and the system

reaches a steady state, and (2) the voltage across the diode

reaches the on voltage landmark causing a mode transition

(shown in magenta) resulting in the diode turning on. This

second trajectory satisfies the requirement. Therefore, this

topology is a candidate design. In the next section, we

describe a method for generating constraints to guide

detailed design.

Focusing the Envisionment with Guards

For many designs, qualitative verification will result in

both trajectories that satisfy the requirements and

trajectories that do not. As observed by Iwasaki (1997) this

ambiguity is useful in design because it can alert designers

to potential problems, such as the kinematic singularity in

Figure 4. It can also be used to construct additional

constraints to guide detailed design. In this section we

present guards, which are constraints on the model that

focus the envisionment toward successful states.

 One source of ambiguity arises from the fact that each

quantity space is defined with respect to a single

component. Consider the feasible diode circuit in Figure 7.

In this model, there is a battery voltage landmark in the

battery model and turn on voltage landmark in the diode

model. The ambiguity in the simulation results from

ambiguity in the ordering of these landmarks. However,

determining properties to ensure the correct trajectory is

not straightforward. We propose a method for deriving

inequalities through model construction and qualitative

verification.

 Our algorithm is as follows. First, we propagate quantity

spaces across constraints. Consider the constraint

specifying the voltage across the battery, v = p.v – n.v. The

only variable with a landmark other than 0 is the variable v

has a positive landmark VBat. We generate a symmetric

quantity space, one in which the inverse of each landmark

is included (e.g., (-∞, -VBat, Q0, VBat, ∞)) for each

variable. We do this for each non-simple quantity space

(i.e., with landmarks other than 0). Next, we look for each

variable with multiple quantity spaces and create a set of

single quantity spaces representing a total ordering of the

variables. In our diode example, each voltage variable will

have two quantity spaces, one with the VBat landmark and

one with OnV landmark. Therefore, we generate three

quantity spaces representing the possible orderings the two

landmarks:

1. OnV > VBat (-∞, -OnV, -VBat, Q0, VBat, OnV, ∞)

2. OnV = VBat (-∞, -L1, Q0, L1, ∞)

3. OnV < VBat (-∞, -VBat, -OnV, Q0, OnV, VBat, ∞)

L1 is a new landmark that is created that is equal to OnV

and VBat. We create three qualitative models with the same

set of constraints, but with different quantity spaces for the

voltage variables in the model.

 We perform qualitative verification on each of the

systems. The envisionment of the first system consists of

three states terminating when the capacitor is charged and

the diode is off. By simulating the second system, our

system determines that the initial conditions are

inconsistent because the only trajectory leads to an endless

loop of mode transitions (i.e., the diode switches between

off and on). The third system results in an envisonment of

twelve states in which all trajectories satisfy the

requirements. Therefore any parameter settings that satisfy

the inequality defining the system, OnV < VBat, will result

in a system that meets the requirements. In this manner, we

can infer inequalities to guide parameter selection in

detailed design.

Future Work

This work is part of the METAX effort whose goal is a 5x

reduction in the amount of time required to design and

verify complex cyber physical systems (e.g., satellites,

aircraft, and military ground vehicles). These systems have

thousands of components and equations. To support such

designs we need both modeling breadth and scalability. By

breadth here, we mean the ability to import and abstract an

appropriate significant portion of the Modelica Standard

Library. The scale of qualitative simulation needed is a

second challenge.

 A challenge with respect to breadth is the useful

expressiveness of the Modelica modeling language,

especially as it has been used as a general programming

language. Modelica includes many constructs, in addition

to equations and discrete variables, that are sometimes

used in modeling components. One example is the user-

defined algorithm. While some algorithms have

straightforward qualitative analogs (e.g., linear

interpolation tables), others involve complex operations

(e.g., quaternion for spatial rotations). We intend to

systematically analyze the Modelica Standard Library to

determine what portion may be directly imported to create

large qualitative models.

 Given a large qualitative model, scale is a challenge in

performing qualitative simulation. Factoring, or

decomposition, has long been an important way of scaling

up qualitative simulation. This involves simulating

subcomponents individually and maintaining a record of

their mutual constraints. A common approach is to divide

the system at component boundaries (Clancy & Kuipers

1997). Factoring the model by spatio-temporal interactions

has been useful for performing battlespace simulations (de

Kleer et al. 2009). Guglielmann & Ironi (2010) present a

decomposition method by analyzing the causal ordering of

the equations. Our largest simulation to date involves a

drivetrain model with 61 variables and results in 12896

situations. In addition to implementing existing factoring

techniques, we believe we will need new ideas to simulate

and verify systems at the scale of a full military vehicle.

Related Work

In addition to the qualitative reasoning work mentioned

throughout this paper, Shults and Kuipers (1997) present

the first qualitative verification system, which proves

properties about continuous systems expressed in

computational tree logic (Emerson 1990). Struss and Price

(2003) report on applications of qualitative reasoning in

automotive design focusing on diagnosis. Our work hopes

to build on these results by placing qualitative reasoning

into OpenModelica, a popular open source design tool.

Sacenbacher and Struss (2005) provide a detailed analysis

of the problems posed by locally defined quantity spaces.

Our work departs from theirs by including trajectory

requirements necessitating simulation.

Alternative formulations of this problem arise from the

fields of hybrid systems and model checking. Hybrid

systems require quantitative models and numerical

parameters. Such information is often not available in early

design. In contrast to our approach of constructing a model

from components, HybridSAL (Tiwari 2008), a hybrid

system verification system, begins with a set of equations,

with numeric parameters chosen. While HybridSAL has

the advantage of being able to answer quantitative

questions about a design (e.g., will the vehicle reach 30

mph in 6 seconds), it is limited to linear models. Other

researchers have explored the use of the PRISM model

checking system (Kwiatkowska et al. 2011) to perform

verification of cyber-physical systems. PRISM models

have the advantage that they can consider probabilistic

state transitions. Probabilistic state transitions make

PRISM particularly useful for verifying requirements about

the likely reliability of systems given failure rates of

components (e.g, “what is the probability that vehicle will

be able to operate continuously for 570 hours”). A

challenge for doing this analysis is that there is no

automatic way to move from equations specifying

components to the models used by PRISM.

Discussion

While the design of physical systems is a well-known

application area for qualitative reasoning, there have been

few efforts to integrate QR into existing modeling and

simulation tools. Our design exploration environment

seeks to enable designers to use a large existing library of

1200+ components within a familiar interface. With

requirements specified in temporal logic, we use

qualitative verification to give following feedback: (1)

whether the design work for all, some, or none of the

parameter values, (2) which requirements may be violated,

and (3) what derived requirements are needed to avoid

dead-end states. We also showed how qualitative

verification can be used within an automated design space

exploration system to identify feasible component

topologies. Finally, we described how parameter

constraints, or guards, can be inferred by performing

qualitative verification on multiple models.

 While we face challenges with respect to importing

models and scaling up, the above examples illustrate the

promise of our approach. Success in this research project

will place the power of qualitative reasoning in the hands

of expert and non-expert designers alike thereby reducing

the amount of time required to design complex cyber-

physical systems.

Acknowledgements

We thank Peter Bunus (Linkoping University) for helping

us understand the nuances of Modelica models, Christian

Fritz for his help generating candidate designs, and Peter

Struss for discussions pertaining to qualitative verification.

This work was sponsored by The Defense Advanced

Research Agency (DARPA), Tactical Technology Office

(TTO), under the META program and is Approved for

Public Release, Distribution Unlimited. The views and

conclusions in this document are those of the authors and

should not be interpreted as representing the official

policies, either expressly or implied, of the Defense

Advanced Research Projects Agency or the U.S.

Government.

References

Brajnik, G. and Clancy, D. 1996. Trajectory constraints in
qualitative simulation. In Proceedings of the National Conference
on Artificial Intelligence (AAAI-96), AAAI/MIT Press, 1996.

Clancy, D. and Kuipers, B. 1994. Model decomposition and
simulation. In Working Papers of the Eighth International
Workshop on Qualitative Reasoning about Physical Systems (QR-
94), Nara, Japan

deKleer, J., Forbus, K., Hinrichs, T., Sungwook, Y., and Jones,
E.K., 2009. Factored Envisioning. In Proceedings of the 23rd
Annual Workshop on Qualitative Reasoning, Ljubljana, Slovenia.

de Kleer, J. and Williams, B.C. 1992. Special volume on
Qualitative Reasoning about Physical Systems II, Artificial
Intelligence. Elsevier.

Emerson, E. 1990. Temporal and Modal Logic. In van Leeuwen,
J. ed. Handbook of Theoretical Computer Science. North
Holland: Amsterdam.

Everett, J. O. 1999. Topological inference of teleology: Deriving
function from structure via evidential reasoning. Artificial
Intelligence, 113 (1-2).

Franke, D. 1991. Deriving and using descriptions of purpose.
IEEE Expert, April 1991, pp. 41-47.

Fritzson, P. 2004. Principles of Object Oriented Modeling and
Simulation With Modelica 2.1. Piscataway, NJ: IEEE Press.

Forbus, K. 1984. Qualitative process theory. Artificial
Intelligence, 24. Elsevier 85-168.

Guglielmann, R. & Ironi, L. 2010. A divide-and-conquer strategy
for qualitative simulation of complex dynamical systems. In
Proceedings of the 24th Annual Workshop on Qualitative
Reasoning. Portland, Oregon.

Iwasaki, Y. 1997. Qualitative reasoning and the sciences of
design. IEEE Expert: Intelligence Systems. Special issue on AI in
Design. D. Brown and W. Birmingham, eds. April.

Kuipers, B. 1994. Qualitative Reasoning: Modeling and
Simulation with Incomplete Knowledge. Cambridge, MA: MIT
Press.

Kwiatkowska, M., Norman, G., and Parker, D. 2011. PRISM 4.0:
Verification of Probabilistic Real-time Systems. In Proceedings
of the 23rd International Conference on Computer Aided
Verification (CAV'11), volume 6806 of LNCS, pages 585-591,
Springer

Sachenbacher, M. & Struss, P. 2005. Task-dependent qualitative
domain abstraction. Artificial Intelligence 162 (2005) pp. 121-
143 ISSN: 0004-3702.

Shults, B. and Kuipers, B. 1997. Proving properties of continuous
systems: qualitative simulation and temporal logic. Artificial
Intelligence. 92: 91-129, 1997.

Struss, P. and Price, C. 2003. Model-based systems in the
automotive industry. AI Magazine. 24(4). AAAI Press.

Tiwari, A. 2008. Abstractions for hybrid systems. Formal
Methods in Systems Design, 32:57–83.

Wetzel, J. and Forbus, K. (2009). Automated Critique of
Sketched Mechanisms. Proceedings of the 21st Innovative
Applications of Artificial Intelligence Conference. Pasadena,
California.

Williams, B. 1984. The Use of Continuity in Qualitative Physics.
In Proceedings of the National Conference on Artificial
Intelligence, Austin, TX, pp. 350-354.

