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Abstract 

Design of physical devices to meet requirements involves 
exploration of alternative configurations, and evaluation of 
performance and tradeoffs. In addition to numeric analyses 
and quantitative simulations, designers use qualitative 
knowledge about components, devices, and contexts of use 
to arrive at suitable designs. To put qualitative reasoning 
into the hands of the designers, it is necessary to integrate 
with existing design tools (e.g., OpenModelica) in a design 
exploration environment. This environment provides access 
to standard model libraries, and numeric simulation of fully 
specified designs. Before selecting all parameters of a 
design, the integrated qualitative verification we describe 
can be used to determine if the design will meet 
requirements for all, some, or no set of numeric parameters. 
It can also identify derived requirements. Qualitative 
verification can also be used to support design space 
exploration through a tool that automatically generates 
candidate designs and identifies promising designs. To 
support detailed design, we demonstrate the automatic 
extraction of guards, parameter inequalities that focus the 
simulation toward desired outcomes.  

Qualitative Reasoning and Design 

The design of physical devices is a core task for 

professional engineers in the automotive, aerospace, and 

electronics industries. With crowd sourcing, design of such 

devices is now also undertaken by amateurs around the 

world. An example is the team at Wikispeed
1
, which is 

designing a 100 mpg car in their free time. Improving 

available tools by adding qualitative analysis should not 

only reduce the amount of time required to create 

innovative solutions, but also improve the final design. 

 Qualitative reasoning has its roots in automating 

reasoning about physical systems (Forbus 1984; de Kleer 

& Williams 1992). Based on the intuition that engineers 

employ qualitative reasoning extensively throughout the 

design process, numerous researchers have sought to 

exploit qualitative reasoning in the context of design 

(Franke 1991; Iwasaki 1997; Everett 1999; Wetzel & 
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Forbus 2009). While producing advances in qualitative 

reasoning, these approaches have fallen short of affecting 

the design process in practice because they have not 

worked well with existing design tools, a notable exception 

is the AutoSteve (Struss & Price 2003). Our goal is to build 

a better design exploration environment by integrating 

qualitative analysis with existing software tools and 

libraries for graphical construction and simulation of 

designs. Therefore, we hope to support designers with 

qualitative reasoning techniques enabling them to identify 

more potential pitfalls, consider a broader range of designs, 

and guide detailed design. 

 Verification is the process of proving a design meets 

certain requirements. Given a design with unspecified 

parameters and a context of use, qualitative verification 

performs qualitative simulation to determine if the design 

meets a set of requirements for all, some, or no choices of 

component parameters. In this paper, we show how the 

results of qualitative verification support automated design 

space exploration and detailed design. By filtering 

automatically generated topologies qualitatively, we reduce 

the space of topologies under consideration. When 

qualitative verification indicates some possible failures, 

and some potentially successful designs, we use the 

envisionment to infer parameter inequalities, or guards, 

that prevent the failure behaviors from occurring. These 

guards provide guidance for a more fully specified design. 

For example, a design of an electrical circuit may meet 

requirements only when the voltage of a power source is 

greater than the turn on voltage of a diode.  

 This paper is organized as follows. In the next section, 

we discuss our efforts in creating a design exploration 

environment by integrating with OpenModelica, an open 

source simulation system that supports the standard 

modeling language, Modelica. This is followed by a 

discussion of qualitative verification and an illustrative 

example identifying potential design problems. Next, we 

present an automatic design space exploration system that 

uses qualitative verification to filter topologies. This is 

followed by a discussion of our approach for automatically 



extracting guards from feasible designs. We close with a 

discussion of related and future work. 

Design Exploration Environment 

Designers currently use sophisticated tools for creating and 

analyzing designs. To make qualitative analysis useful to 

these designers, it needs to be easily accessible from a 

standard tool.  Consequently, we have been integrating 

qualitative reasoning into OpenModelica
2
 (Fritzson 2004), 

an open source Modelica modeling and simulation 

environment. OpenModelica provides a graphical model 

editor (shown in Figure 1) that is familiar to designers as 

well as access to the Modelica Standard Library with over 

1200 models.  

 

 

 

Designers use OpenModelica to create models and 

perform simulations. Models are created by selecting 

components from the standard model library, and creating 

connections between them. This is identical to the process 

used in creating qualitative component models. Component 

models in Modelica are defined by sets of ordinary 

differential equations (ODEs) describing the constraints 

among the parts of the components. Qualitative models 

will have the same structure, except that they use 

qualitative differential equations (QDEs) (Kuipers 1994) to 

describe component behavior.   

Both OpenModelica and qualitative simulators flatten 

the component models to perform the simulation – that is 

eliminate component boundaries, and create a single set of 

(potentially optimized) equations that are then handled by 

the simulation engine. For Modelica, this is a numeric 
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simulation.  For qualitative simulation, the equations of 

transformed into a set of constraints that determine the 

temporal evolution of the system. 

These parallels in system structure suggested two 

approaches to us for integrating qualitative reasoning with 

OpenModelica: (1) abstract component models, and (2) 

extract equations produced by the OpenModelica compiler. 

We describe each in turn. 

Text-to-Text Translation of Component Models 

Modelica defines declarative, acausal, discrete-continuous 

hybrid models making it an appropriate input language for 

qualitative simulation. To facilitate our ongoing automatic 

translation efforts, we aligned our model construction 

language (QML) with Modelica (see the corresponding 

models in Figure 2). The composition of models occurs 

through connections that are domain specific (e.g., 

electrical pins defined in the one port model). While each 

model defines variables i and v, the Modelica variables 

have ranges of real numbers, and the qualitative variables 

have finite ranges defined by the quantity space for each 

variable (Kuipers 1994). In Modelica, these variables are 

differentiable and in our qualitative system each value 

always has a qualitative derivative, or direction (e.g., 

increasing, steady or decreasing). These derivatives enable 

their corresponding simulation engines to generate the 

behavior of the system (Williams 1984). In each modeling 

language, the composition of the models creates additional 

constraints on the flow and effort variables of the models 

governed by Kirchhoff’s laws. 

 

Modelica QML 
model Capacitor 
 extends onePort; 
 parameter Capacitance C; 
 equation  
    i = C * der(v); 
 end Capacitor 

 

(defprototype Capacitor 
 :extends onePort 
 :parameters  ((C)) 
 :equations 
 ((= i  
     (* C (deriv v 1))))) 

Figure 2: Qualitative capacitor model is a simple 

transformation of the one in the Modelica Standard Library  

 

One area where we differ from Modelica representation 

concerns our use of modes instead of conditional 

equations. Modes offer the following advantages: (1) they 

localize the definition of hybrid behavior for the 

component, and (2) they provide a natural way to model 

various faulty behaviors. 

  
(defprototype ideal-diode :extends (one-port) 

   :variables ((v voltage :landmarks  

                          (Q0 OnVoltage))) 

   :mode (off :entry ((= i Q0))  

              :equations ((= i Q0))) 

   :mode (on :entry ((= v OnVoltage))  

             :equations ((= v OnVoltage)))) 

Figure 3: Diode model with two modes 

 

To illustrate our modeling approach, Figure 3 contains 

our definition of an ideal diode. We present this here in our 

Figure 1: OpenModelica graphical connection editor 



internal S-expression syntax, which highlights this 

localization.
3
 This model is a subclass of the electrical one 

port model, which defines two electrical connections, a 

positive pin and a negative pin, and variables for the 

current and voltage of the diode. The redefinition of the 

voltage variable v is essential to create the quantity space 

including Q0, representing 0V, and OnVoltage, representing 

the turn on voltage for the diode. The diode has two modes, 

off and on. The component is in a mode until the entry 

conditions for another mode have been satisfied, in this 

case, if the diode was off, the equation stating that no 

current passes through the diode is enforced. This persists 

until the instant when the voltage across the diode equals 

OnVoltage, at which point the equation holding the voltage 

constant is enforced, and current is no longer constrained 

and can flow through the diode.  

Using OpenModelica Compilation 

In order for OpenModelica to perform numeric simulation, 

it generates a single set of quantitative equations. As an 

alternative to translating the component based model, we 

have been exploring creating the qualitative constraints for 

qualitative simulation by abstracting the equations 

constructed by the OpenModelica Compiler. Using this 

approach has two advantages over text-to-text transfer. 

First, Modelica includes language constructs for supporting 

complex model construction in its models, For example, 

one can create a transformer with a parameter-defined 

number of inductors. We did not want to support the text-

to-text interpretation of these constructs. The 

OpenModelica compiler handles these as part of its 

flattening process.. Second, the OpenModelica Compiler 

does both algebraic simplification and index reduction as 

part of the compilation process. Given the set of equations 

produced by the OM compiler, we are often able to create 

the set of constraints necessary to perform qualitative 

simulation. There are still certain Modelica constructs that 

we cannot handle – but we are gradually reducing the size 

of this untranslatable set. So far, we have translated 

equations from models with only continuous dynamics 

such as RLC oscillators. 

 Each of these approaches faces difficulties in the breadth 

of operators available in Modelica. For example, Modelica 

models may define arbitrary algorithms for computing 

particular outputs. An important part of our future work is 

systematically identifying which Modelica constructs can 

be translated into qualitative models and understanding 

how to treat those that can not. 
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Qualitative Verification 

Qualitative simulation is possible very early in the design 

process, before parameters are selected, when alternative 

system topologies are being considered. Given a qualitative 

model, an initial state, and a set of requirements, 

qualitative verification determines if the design will satisfy 

the requirements. In this section, we describe our 

qualitative simulation algorithm, how we incorporate 

requirements into the simulation, and provide an example 

of qualitative verification using a vehicle ramp door.  

Simulation 

Qualitative simulation (de Kleer and Williams 1992), or 

envisioning, is the process of projecting forward, from an 

initial situation and a model, all possible qualitative states 

that may occur. Our qualitative simulation algorithm 

inherits largely from QSIM (Kuipers 1994). Given a state 

(an assignment of qualitative values to each variable), 

qualitative simulation computes possible successor values 

for each variable and uses constraints to determine 

combinations which make up consistent next state(s).  

Consider a position variable that was between the Closed 

and Open landmarks and moving toward Closed. There are 

four possible successor values  for this variable. Its value 

may remain in the interval or reach the Closed landmark 

and it may continue increasing or become steady (its 

derivative stays positive or becomes 0). 

Cyber-physical systems include dynamics that are 

discrete as well as continuous (e.g., an input signal to open 

the door, the changing of gears in a drive train, a diode 

switching from off to on). We model such changes through 

modes, which include an entry condition, new values for 

some variables, and equations that are valid within that 

mode. During simulation, discrete changes occur at 

instants when mode entry conditions are satisfied. The 

initial values and equations govern the behavior of 

quantities in the following interval. The result of 

qualitative simulation is a directed graph of states. 

Requirements 

Cyber-physical systems (CPS) need to satisfy many 

requirements. Static requirements deal with the structure of 

the object (e.g., a car must weigh less than 2500kg), and 

can in general computed from the model. Behavioral 

requirements deal with the response of the object during a 

use case, or scenario. In general, these need to be verified 

through simulation. Behavioral requirements may concern 

a prohibited state of the system (e.g., where the engine 

RPM exceeds its redline value) or undesirable sequences of 

states during a trajectory (e.g., while traveling on level 

terrain at constant velocity, the automatic transmission 

should not chatter between gears). We use linear temporal 

logic as a formal language for stating these requirements 

on trajectories (Emerson 1990). If these requirements are 



supplied to our qualitative simulation algorithm as success 

and failure conditions, we terminate a trajectory in the 

simulation if the condition is met. Because requirements 

are composable (e.g., every engine has a redline speed 

which should not be exceeded), it is possible to model 

requirements as components within the system. 

Requirement components include mode transitions to 

modes named success or failure signaling the 

envisionment algorithm to terminate the behavior. 

After the envisionment graph has been created, 

qualitative verification provides the following analysis. If 

none of the trajectories violate requirements, then for all 

consistent assignments of parameters, the system will 

satisfy all requirements. That is, the system will not reach a 

state that violates a safety requirement or transition along 

an undesirable trajectory. If some trajectories violate 

requirements and others do not, then the design may satisfy 

the requirements with appropriate constraints on 

component parameter values. In either case, detailed 

design is required to determine the assignment of 

parameter values that best fits the needs of the designer. If 

all of the trajectories violate requirements, detailed design 

is not necessary because no set of parameter values will 

satisfy the requirement. 

Verification Example: Vehicle door linkage 

To illustrate qualitative verification, consider the door 

system shown in Figure 5. The architectural model shows 

quantity spaces for the positions of the piston that moves 

the door, and the door itself. The system consists of a PD 

controller, which uses position and velocity sensors from 

the door; a piston, whose linear motion applies a torque on 

the door; and the door slab itself, that rotates around a 

bottom hinge. An input signal to the controller specifies the 

desired next position for the door. This door angle has two 

landmarks in the position quantity space, Closed and Open, 

and the piston has one landmark on the linear position 

quantity space, parallel, representing the angle where the 

piston acts in parallel with the hinge. We will evaluate this 

design against the requirements that the door should 

always be able to be closed, and the door position should 

always be between the door open and door closed position 

inclusively. As a use case, we use a scenario in which the 

door starts closed, and (1) the command is given to open 

the door, and (2) when the door has reached the open 

position, the command will be given to close the door.  

Our system produces the envisionment shown in 

Figure 4. The left pane shows the actual envisionment, 

indicating that even for this simple system, there are many 

states and trajectories. The simplified graph in the right 

pane illustrates what the designer can learn from the 

envisionment. In this use case, the design may reach a 

successful situation (green node labeled SUCCESS). Red 

nodes in the graph are qualitative states that violate 

requirements. Appropriate parametric assignment will be 

needed to ensure that trajectory for each failed state is 

avoided. 

Further analysis of the envisionment provides additional 

guidance for detailed design. There is a terminal situation, 

(node 6 in the simplified graph, cyan in the full graph), that 

does not satisfy either the success or failure conditions of 

the system. In the example, this state results from a 

kinematic singularity in the piston door connection. That 

is, when the acting angle of the piston is parallel to the 

angle of the door, the piston produces no torque. While this 

is part of the piston component model, it only leads to a 

 

Figure 5: Architectural of the door system  

 

  
 

Figure 4: The envisionment graph for the door system model produced by our system (left) and a simplified version for 

presentation (right) 

 

 



quiescent (terminal) state if the door is stationary at this 

point. This unmarked dead-end state suggests the need for 

an additional requirement to guide the designer to avoid 

this state.  This risk case would not become apparent in a 

simpler use case; it requires one where the door first 

opened and then closed. This indicates the need for careful 

design of use cases. 

Automated Design Space Exploration 

Innovative design often requires a search for different 

configurations of existing components (new topologies) to 

achieve a specified functionality. This search space is 

exponential in the number of components in the design. 

Qualitative verification can help prune the design space in 

two ways.  By using qualitative models of components, 

each qualitative component model corresponds to a many 

possible quantitative components. Therefore, one 

simulation can summarize many numerical experiments. 

Secondly, when a qualitative simulation shows that no 

choice of parameters will satisfy the requirements, that 

topology can be eliminated from the search space.  If there 

is a feasible design, the envisionment can guide parameter 

selection in a detailed design.  

As an example of design space exploration, consider a 

requirement for a system that turns on a light emitting 

diode a short but perceptible time after a switch is turned 

on. The available components include batteries, switches, 

resistors, capacitors, inductors, and diodes. The topological 

design space includes every configuration of these 

components. To illustrate the utility of qualitative 

verification, we describe a design space exploration tool 

that searches the design space by taking one of the 

following design actions: adding a component in parallel or 

series with an existing component, removing a component, 

or flipping a component in the circuit. Figure 6 illustrates 

the starting design, which includes just a battery, switch 

and diode.  

 

Figure 6: Starting point for topological design space 

exploration 

 

After each design action, we build a qualitative model 

and simulation for the current design candidate. Many 

candidates are equivalent to shorted or open circuits. Our 

system identifies them because their initial conditions are 

inconsistent. If the design candidate has consistent initial 

conditions, our system performs qualitative verification. 

Consider a circuit with a resistor completing the circuit in 

Figure 6. The envisionment of this will begin with both the 

switch and diode off. It has two trajectories following the 

instant the switch is turned on. In one, the diode is on, and, 

in the other, the diode is off. The trajectory of the actual 

system depends on the ordinal relationship between the on 

voltage for the diode and the battery’s voltage. Because 

neither of these trajectories satisfies the requirement that 

there exists a delay before the light turns on, qualitative 

verification eliminates this topology without considering 

all possible combinations of battery voltages, resistances 

and on voltages. 

 

  

 

Figure 7: The envisionment on the right proves that the 

topology on the left can satisfy the requirements 

 

 Now consider the design in Figure 7. QRM produces an 

envisionment with two trajectories. They are identical in 

the interval after the switch is turned on, the capacitor is 

charging and the voltage across the diode is increasing. 

This interval terminates in one of two instants: (1) the 

current ceases flowing into the capacitor and the system 

reaches a steady state, and (2) the voltage across the diode 

reaches the on voltage landmark causing a mode transition 

(shown in magenta) resulting in the diode turning on. This 

second trajectory satisfies the requirement. Therefore, this 

topology is a candidate design. In the next section, we 

describe a method for generating constraints to guide 

detailed design. 

Focusing the Envisionment with Guards 

For many designs, qualitative verification will result in 

both trajectories that satisfy the requirements and 

trajectories that do not. As observed by Iwasaki (1997) this 

ambiguity is useful in design because it can alert designers 

to potential problems, such as the kinematic singularity in 

Figure 4. It can also be used to construct additional 

constraints to guide detailed design. In this section we 

present guards, which are constraints on the model that 

focus the envisionment toward successful states. 

 One source of ambiguity arises from the fact that each 

quantity space is defined with respect to a single 

component. Consider the feasible diode circuit in Figure 7. 



In this model, there is a battery voltage landmark in the 

battery model and turn on voltage landmark in the diode 

model. The ambiguity in the simulation results from 

ambiguity in the ordering of these landmarks. However, 

determining properties to ensure the correct trajectory is 

not straightforward. We propose a method for deriving 

inequalities through model construction and qualitative 

verification. 

 Our algorithm is as follows. First, we propagate quantity 

spaces across constraints. Consider the constraint 

specifying the voltage across the battery, v = p.v – n.v. The 

only variable with a landmark other than 0 is the variable v 

has a positive landmark VBat. We generate a symmetric 

quantity space, one in which the inverse of each landmark 

is included (e.g., (-∞, -VBat, Q0, VBat, ∞)) for each 

variable. We do this for each non-simple quantity space 

(i.e., with landmarks other than 0). Next, we look for each 

variable with multiple quantity spaces and create a set of 

single quantity spaces representing a total ordering of the 

variables. In our diode example, each voltage variable will 

have two quantity spaces, one with the VBat landmark and 

one with OnV landmark. Therefore, we generate three 

quantity spaces representing the possible orderings the two 

landmarks: 

 

1. OnV > VBat (-∞, -OnV, -VBat, Q0, VBat, OnV, ∞) 

2. OnV = VBat (-∞, -L1, Q0, L1, ∞) 

3. OnV < VBat (-∞, -VBat, -OnV, Q0, OnV, VBat, ∞) 

 

L1 is a new landmark that is created that is equal to OnV 

and VBat. We create three qualitative models with the same 

set of constraints, but with different quantity spaces for the 

voltage variables in the model. 

 We perform qualitative verification on each of the 

systems. The envisionment of the first system consists of 

three states terminating when the capacitor is charged and 

the diode is off. By simulating the second system, our 

system determines that the initial conditions are 

inconsistent because the only trajectory leads to an endless 

loop of mode transitions (i.e., the diode switches between 

off and on). The third system results in an envisonment of 

twelve states in which all trajectories satisfy the 

requirements. Therefore any parameter settings that satisfy 

the inequality defining the system, OnV < VBat, will result 

in a system that meets the requirements. In this manner, we 

can infer inequalities to guide parameter selection in 

detailed design.  

Future Work 

This work is part of the METAX effort whose goal is a 5x 

reduction in the amount of time required to design and 

verify complex cyber physical systems (e.g., satellites, 

aircraft, and military ground vehicles). These systems have 

thousands of components and equations. To support such 

designs we need both modeling breadth and scalability. By 

breadth here, we mean the ability to import and abstract an 

appropriate significant portion of the Modelica Standard 

Library. The scale of qualitative simulation needed is a 

second challenge. 

 A challenge with respect to breadth is the useful 

expressiveness of the Modelica modeling language, 

especially as it has been used as a general programming 

language.  Modelica includes many constructs, in addition 

to equations and discrete variables, that are sometimes 

used in modeling components. One example is the user-

defined algorithm. While some algorithms have 

straightforward qualitative analogs (e.g., linear 

interpolation tables), others involve complex operations 

(e.g., quaternion for spatial rotations). We intend to 

systematically analyze the Modelica Standard Library to 

determine what portion may be directly imported to create 

large qualitative models. 

 Given a large qualitative model, scale is a challenge in 

performing qualitative simulation. Factoring, or 

decomposition, has long been an important way of scaling 

up qualitative simulation. This involves simulating 

subcomponents individually and maintaining a record of 

their mutual constraints. A common approach is to divide 

the system at component boundaries (Clancy & Kuipers 

1997). Factoring the model by spatio-temporal interactions 

has been useful for performing battlespace simulations (de 

Kleer et al. 2009). Guglielmann & Ironi (2010) present a 

decomposition method by analyzing the causal ordering of 

the equations.  Our largest simulation to date involves a 

drivetrain model with 61 variables and results in 12896 

situations. In addition to implementing existing factoring 

techniques, we believe we will need new ideas to simulate 

and verify systems at the scale of a full military vehicle.  

Related Work 

In addition to the qualitative reasoning work mentioned 

throughout this paper, Shults and Kuipers (1997) present 

the first qualitative verification system, which proves 

properties about continuous systems expressed in 

computational tree logic (Emerson 1990). Struss and Price 

(2003) report on applications of qualitative reasoning in 

automotive design focusing on diagnosis. Our work hopes 

to build on these results by placing qualitative reasoning 

into OpenModelica, a popular open source design tool. 

Sacenbacher and Struss (2005) provide a detailed analysis 

of the problems posed by locally defined quantity spaces. 

Our work departs from theirs by including trajectory 

requirements necessitating simulation. 

Alternative formulations of this problem arise from the 

fields of hybrid systems and model checking. Hybrid 



systems require quantitative models and numerical 

parameters. Such information is often not available in early 

design. In contrast to our approach of constructing a model 

from components, HybridSAL (Tiwari 2008), a hybrid 

system verification system, begins with a set of equations, 

with numeric parameters chosen. While HybridSAL has 

the advantage of being able to answer quantitative 

questions about a design (e.g., will the vehicle reach 30 

mph in 6 seconds), it is limited to linear models. Other 

researchers have explored the use of the PRISM model 

checking system (Kwiatkowska et al. 2011) to perform 

verification of cyber-physical systems. PRISM models 

have the advantage that they can consider probabilistic 

state transitions. Probabilistic state transitions make 

PRISM particularly useful for verifying requirements about 

the likely reliability of systems given failure rates of 

components (e.g, “what is the probability that vehicle will 

be able to operate continuously for 570 hours”). A 

challenge for doing this analysis is that there is no 

automatic way to move from equations specifying 

components to the models used by PRISM.  

Discussion  

While the design of physical systems is a well-known 

application area for qualitative reasoning, there have been 

few efforts to integrate QR into existing modeling and 

simulation tools. Our design exploration environment 

seeks to enable designers to use a large existing library of 

1200+ components within a familiar interface. With 

requirements specified in temporal logic, we use 

qualitative verification to give following feedback: (1) 

whether the design work for all, some, or none of the 

parameter values, (2) which requirements may be violated, 

and (3) what derived requirements are needed to avoid 

dead-end states. We also showed how qualitative 

verification can be used within an automated design space 

exploration system to identify feasible component 

topologies. Finally, we described how parameter 

constraints, or guards, can be inferred by performing 

qualitative verification on multiple models.  

 While we face challenges with respect to importing 

models and scaling up, the above examples illustrate the 

promise of our approach. Success in this research project 

will place the power of qualitative reasoning in the hands 

of expert and non-expert designers alike thereby reducing 

the amount of time required to design complex cyber-

physical systems. 
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