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Abstract. Plays are sequences of actions to be undertaken by a col-
lection of agents, or teammates. The success of a play depends on a
number of factors including, perhaps most importantly, the opponent’s
play. In this paper, we present an approach for online opponent model-
ing and illustrate how it can be used to improve offensive performance
in the Rush 2008 football simulator. In football, team behaviors have an
observable spatio-temporal structure, defined by the relative physical po-
sitions of team members over time. We demonstrate that this structure
can be exploited to recognize football plays at a very early stage. Using
the recognized defensive play, knowledge about expected outcomes, and
spatial similarity between offensive plays, we retrieve an offensive play
from the case base. This play is then (partially) reused to improve an
in-progress offensive play. We call this process a play switch. Empirical
results indicate that spatial similarity is central to play retrieval, and that
substituting only a subset of the current play yields greater improvement
over a full play substitution.

1 Introduction

To succeed at American Football, a team must be able to successfully execute
closely-coordinated physical behavior. Teams rely on pre-existing sets of offensive
and defensive plays, or playbooks, to achieve this coordinated behavior. By ana-
lyzing play history, it is possible to glean critical insights about future plays. In
American Football, quarterbacks frequently call audibles, changes of play based
on an assessment of the opponent’s play. This task involves identifying the op-
ponent’s play and then selecting a new play for the offensive team.

In physical domains (military or athletic), team behaviors often have an ob-
servable spatio-temporal structure, defined by the relative physical positions of
team members. This structure can be exploited to perform behavior recognition
on traces of agent activity over time. This paper describes a method for recogniz-
ing defensive plays from spatio-temporal traces of player movement in the Rush



2008 Football Simulator. Rush 2008 simulates a modified version of American
Football and was developed from the open source Rush 2005 game [1].

Using knowledge of play histories, we present a method for executing a play
switch based on the potential of other plays to improve the yardage gained and
their similarity to the current play. From a case-based reasoning perspective [2],
this involves retrieving a superior play and adapting it to the current situation.
In retrieving a superior play, we show that considering the relative similarity
of the current play compared with the candidate play improves performance.
Furthermore, we show that limiting the play switch to a subgroup of players is
preferable to switching them all.

We begin by describing the Rush Football simulator. Next we describe our
play switching approach with a detailed discussion of opposing play recognition,
play similarity, and play adaptation. We outline the system that implements
these ideas and present an empirical evaluation. We close with related and future
work.

2 Rush Football

Football is a contest of two teams played on a rectangular field that is bordered
on lengthwise sides by an end zone. Unlike American Football, Rush teams have
only 8 players on the field at a time out of a roster of 18 players. The field is
100 yards by 63 yards. The game’s objective is to out-score the opponent, where
the offense (i.e., the team with possession of the ball), attempts to advance the
ball from the line of scrimmage (i.e., the starting position of the ball) into their
opponent’s end zone. Therefore, an offensive play’s success can be measured by
the number of yards gained. Offensive plays contain the following positions:

Quarterback (QB): is given the ball at the start of each play, and will initiate
either a run or pass to a receiver.

Running back (RB): begins behind the quarterback. The running back is el-
igible to receive a handoff or pass from the quarterback.

Fullback (RB): serves the same purpose as the RB.
Wide receiver (WR): executes passing routes and is the primary receiver for

pass plays.
Offensive lineman (OL): is responsible for preventing the defense from reach-

ing the ball carrier.
Tight end (TE): serves either as a lineman or as a receiver.

A Rush play is composed of (1) a starting formation and (2) instructions
for each player in that formation. A formation is a set of (x,y) offsets from the
center of the line of scrimmage. By default, instructions for each player consist
of (a) an offset/destination point on the field to run to, and (b) a behavior to
execute when they get there. Play instructions are similar to a conditional plan
and include choice points where the players can make individual decisions as well
as pre-defined behaviors that the player executes to the best of their physical
capability. Rush includes three offensive formations (power, pro, and split) and



four defensive formations (23, 31, 2222, 2231). Each formation has eight different
plays (numbered 1-8) that can be executed from that formation. Offensive plays
typically include a handoff to the running back/fullback or a pass executed by
the quarterback to one of the receivers, along with instructions for a running
pattern to be followed by all the receivers. Defensive plays direct players to
certain areas or toward individual offensive players with the goal of tackling the
offensive player with the ball.

3 Offensive Play Switches

In American Football, the quarterback often dynamically changes the play based
on the defensive formation and their reactions to offensive actions before the
beginning of the play. Although Rush does not allow for actions before the play,
the Rush simulator allows us to alter the play shortly after it has begun.

Fig. 1. Play-switching approach.

Our approach focuses on two aspects of case-based reasoning: retrieval and
reuse [2]. At this early stage, we are not concerned with the revision or retention
of play-switching episodes for future use. Our play switch approach is summa-
rized in Figure 1. Our retrieval method selects an expected best offensive play
by quickly recognizing the opponent’s play, predicting the results of different of-
fensive plays against it, and computing similarities between each offensive plays
and the current situation. The retrieved play is reused by giving new actions to
players in the current situation. Retrieval is performed using a case base of 24
plays (i.e., 8 plays for each of the three offensive formations).

The system’s background knowledge includes 50 instances of every offensive
and defensive play combination. These instances are used to train the recognition
system, generate an expected yardage table for every combination of plays, and
compute similarity between the offensive plays. The next sections describe the
play recognition and similarity metric used in retrieval, followed by a discussion
of how the retrieved play is adapted for the current situation.



3.1 Play Recognition using SVMs

Given a series of observations, our goal is to recognize the defensive play as
quickly as possible in order to maximize our team’s ability to intelligently re-
spond with the best offense. Thus, the observation sequence grows with time
unlike in standard offline activity recognition where the entire set of observa-
tions is available. We approach the problem by training a series of multi-class
discriminative classifiers, each of which is designed to handle observation se-
quences of a particular length. In general, we expect that the early classifiers
will be less accurate since they are operating with a shorter observation vector
and because the positions of the players have deviated little from the initial
formation.

We perform this classification using support vector machines [3]. Support
vector machines (SVM) are a supervised algorithm that can be used to learn
a binary classifier; they have performed well on a variety of pattern classifica-
tion tasks, particularly when the dimensionality of the data is high (as in our
case). Intuitively an SVM projects data points into a higher dimensional space,
specified by a kernel function, and computes a maximum-margin hyperplane
decision surface that separates the two classes. Support vectors are those data
points that lie closest to this decision surface; if these data points were removed
from the training data, the decision surface would change. More formally, given
a labeled training set {(x1, y1), (x2, y2), . . . , (xl, yl)}, where xi ∈ <N is a feature
vector and yi ∈ {−1,+1} is its binary class label, an SVM requires solving the
following optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

constrained by:

yi(wTφ(xi) + b) ≥ 1− ξi,
ξi ≥ 0.

The function φ(.) that maps data points into the higher dimensional space is
not explicitly represented; rather, a kernel function, K(xi,xj) ≡ φ(xi)φ(xj), is
used to implicitly specify this mapping. In our application, we use the popular
radial basis function (RBF) kernel:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0.

Several extensions have been proposed to enable SVMs to operate on multi-
class problems (with k rather than 2 classes), such as one-vs-all, one-vs-one, and
error-correcting output codes. We employ a standard one-vs-one voting scheme
where all pairwise binary classifiers, k(k−1)/2 = 28 for every multi-class problem
in our case, are trained and the most popular class is selected. Many efficient
implementations of SVMs are publicly available; we use LIBSVM [4].



We train our classifiers using a collection of simulated games in Rush col-
lected under controlled conditions: 40 instances of every possible combination of
offense (8) and defense plays (8), from each of the 12 starting formation config-
urations. Since the starting configuration is known, each series of SVMs is only
trained with data that could be observed starting from its given configuration.
For each configuration, we create a series of training sequences that accumulates
spatio-temporal traces from t = 0 up to t ∈ {2, . . . , 10} time steps. A multiclass
SVM (i.e., a collection of 28 binary SVMs) is trained for each of these training
sequence lengths. Although the aggregate number of binary classifiers is large,
each classifier employs only a small fraction of the dataset and is therefore effi-
cient (and highly paralellizable). Cross-validation on a training set was used to
tune the SVM parameters (C and γ) for all of the SVMs. Testing demonstrated
near perfect recognition results, 96.88%, at t = 3, therefore this classifier was
used to help select the most appropriate offensive play, as discussed below.

3.2 Play Similarity Metric

While knowledge about the opposing play is central to retrieving an effective
offensive play, the similarity of the candidate plays to the current play estimates
the feasibility of the play switch.

To calculate play similarities, we create a feature matrix for every forma-
tion/play combination based on background knowledge. The 13 features for each
athlete A include max, min, mean, and median over x and y in addition to the
following five special features:

FirstToLastAngle: Angle from starting point (x0, y0), to ending point (xn, yn),
defined as atan

(
4y
4x

)
StartAngle: Angle from the starting point (x0, y0) to (x1, y1), defined as atan

(
y1−y0
x1−x0

)
EndAngle: Angle from (xn−1, yn−1) to the ending point (xn, yn), defined as

atan
(
4y
4x

)
TotalAngle:

∑N−1
i=0 atan

(
yi+1−yi

xi+1−xi

)
TotalPathDist:

∑N
i=1

2
√

(xi − xi−1)2 + (yi − yi−1)2

These features are similar to the ones used in [5] and more recently by [6]
to match pen trajectories in sketch-based recognition tasks, another spatio-
temporal task. Here, they are generalized for use with multi-player trajectories.
Feature set F for a given play c (c = 1...8, represents possible play matches
per formation) contains all features for each offensive player in the play and is
described as:

−→
Fc = {Ac1 ∪Ac2 ∪ . . . ∪Ac8}

Using the 50 play instances from background knowledge, we compute a sim-
ilarity vector V for every combination of offensive formation, offensive play,



defensive formation, and defensive play combination. This vector includes 8 en-
tries (the computed similarities between the offensive play and the other plays
from that formation). We define the similarity between plays as the sum of the
absolute value of the differences (L1 norm) between features Fci and Fcj . In the
evaluation section, we compare the performance of a similarity-based play switch
mechanism vs. a play switching algorithm that focuses solely on the predicted
defensive play.

3.3 Play Reuse

To reuse the new play in the current situation, we must adapt the current play.
The most straightforward approach involves changing the entire play (i.e., each
offensive player follows the new play from this time forward). An alternative
strategy, subgroup switching, involves modifying the actions of only a small group
of key players while leaving others alone. By segmenting the team in this fashion,
we are able to combine two plays that had previously been identified as alike with
regard to spatio-temporal data, but different in regards to yards gained. Based
on our domain knowledge of football, we selected three subgroups as candidates
to switch: {QB, RB, FB}, {OL, OL, OL}, and {WR, WR, TE}.

4 Improving the Offense with Play Switches

To improve offensive performance, our agent evaluates the competitive advantage
of executing a play switch based on 1) the potential of other plays to improve
the yardage gained and 2) the similarity of the candidate plays to the current
play. Our algorithm for improving Rush offensive play has two main phases:
a preprocess stage, which yields a play switch lookup table, and an execution
stage, where the defensive play is recognized and the offense responds with an
appropriate play switch for that defensive play. We train a set of SVM classifiers
using 40 instances of every possible combination of offensive (8) and defensive
plays (8), from each of the 12 starting formation configurations. This stage yields
a set of models used for play recognition during the game. Next, we calculate
and cache play switches using the following procedure:

1. Collect data by running the Rush 2008 football simulator 50 times for every
play combination.

2. Create yardage lookup tables for each play combination. This information
alone is insufficient to determine how good a potential play is for a play
switch. The transition play must resemble our current offensive play or the
offensive team will spend too much time retracing steps and perform very
poorly.

3. Compute the similarity matrix between offensive plays for all formation/play
combinations.

4. Create the final play switch lookup table based on both the yardage infor-
mation and the play similarity.



To create the play switch lookup table, the agent first extracts a list of
offensive plays L given the requirement yards (Li) > ε where ε is the least
amount of yardage gained before the agent changes the current offensive play to
another. We used ε = 1.95 based on a quadratic polynomial fit of total yardage
gained in 6 tests with ε = {MIN, 1.1, 1.6, 2.1, 2.6,MAX} where MIN is small
enough so that no plays are selected to change and MAX is set so that all plays
are selected for change to the highest yardage play with no similarity comparison.
Second, from the list L find the play most similar to our current play, and add
it to the lookup table.

During execution, the offense uses the following procedure:

1. At each observation less than 4, collect movement traces for each player.
2. At observation 3, use LIBSVM with the collected movement traces and pre-

viously trained SVM models to identify the defensive play, j.
3. Access the lookup table to find best(i, j) for our current play i.
4. If best(i, j) 6= i, Send a change order command to the offensive team to

change to play best(i, j).

As described in Section 3.3, our system allows for different methods of using
the retrieved play. The agent can switch the play for either every offensive player
or a subset.

5 Empirical Evaluation

Our goal is to the answer the following questions:

1. Does our play switching algorithm improve yardage gained?
2. Does retrieval incorporating similarity with the current play outperform a

greedy strategy that selects solely based upon expected yardage gained?
3. What are the effects of subgroup switching on play performance?

To answer the first two questions, we ran the RUSH 2008 simulator for ten
plays on each possible play configuration under three conditions: a baseline with-
out any play switching, our play switch model (using the yardage threshold
ε = 1.95 as determined by the quadratic fit), and a greedy play switch strat-
egy based solely on the yardage table (ε = MAX). The results are shown in
Figure 2(a).

Overall, the average performance of the offense went from 2.82 yards per
play (in the baseline condition) to 3.65 yards per play (ε = 1.95) with an overall
increase of 29%, ±1.5% based on sampling of three sets of ten trials. An analysis
of each of the formation combinations (Figure 2(a)) shows the yardage gain
varies from as much as 100% to as little as 0.1%. Power vs. 23 is dramatically
boosted from about 1.5 yards to about 3 yards per play, doubling yards gained.
Other combinations, such as Split vs. 23 and Pro vs. 32 already gained high
yardage and improved less dramatically (i.e., about .2 to .4 yards more than the
gains in the baseline sample). Overall, our model’s performance is consistently
better for every configuration tested.



(a) Results by play similarity (b) Results by subgroup swtiching

Fig. 2. Similarity-based switching (shown in red) outperforms both the baseline Rush
offense (blue) and a greedy play switch metric (green). Changing the play for just
Group 1 improves performance over changing the entire play.

Results with ε = MAX clearly shows simply changing to the play with great-
est expected yardage generally results in poor performance. When the similarity
metric is not used, the results are drastically reduced. The reason appears to
be mis-coordinations between teammates accidentally introduced by the play
switch; by maximizing the play similarity simultaneously, the possibility of mis-
coordinations is reduced.

To evaluate the subgroup switching, we ran the simulation in three additional
trails. In each trial, our play switching method was allowed to switch only one of
the offensive player subgroups. Using the improvement in yardage, we compared
these trials to the full offense switch and the best offensive play against the
defense.

The results (shown in Figure 2(b)) clearly indicated the best subgroup switch
(consistently Group 1) produced greater gains than the total team switch, which
still performed better than the baseline. The Max category presents the results
of an agent given the opposing play at t = 0, providing a ceiling. Early play
recognition combined with subgroup switching yields the best results.

6 Related Work

Previous work on team behavior recognition has been primarily evaluated within
athletic domains, including American Football [7], basketball [8], and Robocup
soccer simulations [9–12]. In Robocup, most of the research on team intent recog-
nition focused on coaching. Techniques have been developed to extract specific
information, such as home areas [13], opponent positions during set-plays [10],
and adversarial models [9], from logs of Robocup simulation league games. How-
ever, the coaching agents use offline processing to improve their team’s perfor-
mance in future games. In contrast, our agent immediately takes action on the
recognized play to evaluate possible play switches. Ros et al. present a simi-
lar approach involving similarity between offensive and defensive alignments for



selecting plays in robocup soccer [12]. Our retrieval approach differs by using
traces of player movement and a prediction concerning the opposing play. Fur-
thermore, we demonstrate the utility of switching the play for only a subset of
the offensive players. On the other hand, their representations include aspects
of the overall strategy, including the score and the amount of time remaining in
the game. Adding knowledge of this type is necessary for our agent to effectively
play an entire football game.

Comparatively few case-based reasoning researchers have investigated spa-
tial reasoning. Most focus on retrieving precedents based on quantitative and
qualitative features [14] without any adaptation. Using insights from research
on pen stroke recognition [6], our spatial similarity metric incorporates spatio-
temporal knowledge into retrieval, which is then used to adapt the current situa-
tion. Galatea [15] uses stored visual problem-solving episodes consisting of visual
transformations, which are employed analogically to arrive at a solution for new
problems. While transfer in Galatea is iterative, our play switch is a one-shot
process. Furthermore, Galatea places little emphasis on retrieval. Our model uses
spatial knowledge throughout retrieval, first in categorizing the opposing team’s
play, then in determining the most similar play from the case base.

Rush 2008 was developed as a platform for evaluating game-playing agents
and has been used to study the problem of learning strategies by observation [16].
Intention recognition has been used within Rush 2008 as part of a reinforcement
learning method for controlling a single quarterback agent [17]. In this paper,
our approach addresses policies across multiple agents.

7 Conclusion

Accurate opponent modeling is an important stepping-stone toward the creation
of interesting autonomous adversaries. In this paper, we present an approach for
online strategy recognition in the Rush 2008 football simulator. After identifying
the defense’s play, our agent evaluates the advantage of executing a play switch
based on the potential of other plays to improve the yardage gained and their
similarity to the current play.

We have shown that spatio-temporal features enable online strategy recog-
nition in the early stages of a play. Furthermore, by incorporating spatial simi-
larity into the selection of the appropriate play switch, our method avoids mis-
coordinations between offensive players, increasing the yardage gained. Addition-
ally, we demonstrate that limiting the play switch to a subgroup of key players
further improves performance.

In future work, we plan on extending our game playing agent to play the en-
tire game. While our focus on gaining more yards is central to successful offense,
in the complete game, offensive strategy becomes more complex, including scor-
ing and clock management. As discussed previously, we plan to explore methods
for automatically identifying key player subgroups for adapting the play by ex-
amining motion correlations between players. Finally, we plan to explore these
ideas of online strategy recognition in other domains.
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