Resource Bounded Secure Goal Obfuscation

Anagha Kulkarni' and Matthew Klenk? and Shantanu Rane?>* and Hamed Soroush*

1Computer Science Department, Arizona State University, Tempe, AZ, USA

anaghak@asu.edu

ZPalo Alto Research Center, Palo Alto, CA, USA
firstname.lastname@parc.com

Abstract

An Al system that is operating in an adversarial environment
should be able to provide safeguards for its internal informa-
tion. In other words, an adversary should not be able to per-
form diagnosis on the Al system’s internal information based
on the resulting observations during plan execution. The sys-
tem should be able to produce a plan that achieves the desired
objective while minimizing leakage about its internal infor-
mation. In this paper, we present an approach that allows an
Al agent to securely obfuscate its true goal (i.e., agent’s in-
ternal information) for as long as possible using a subset of
candidate goals. By making all the candidate goals equally
likely for as long as possible, the agent’s true goal is kept se-
cured. The Al agent may have to incur an additional cost to
reach its true goal, but this cost buys the obfuscation guar-
antee. Given a larger resource budget, greater obfuscation is
possible. We present empirical evaluations of our approach
using IPC domains to show its scope and feasibility.

1 Introduction

In an adversarial environment, an implicit requirement for an
Al agent is to minimize information leakage while achiev-
ing its objectives. If the agent’s activities are not secure, an
adversarial observer can use diagnosis to infer internal in-
formation and interfere with the agent’s objectives. Consider
the following domains: in military planning, adversaries ob-
serve troop movements to infer possible targets; in corporate
strategy, competitors predict each others future directions by
observing potential partnerships; in product design, compo-
nent specifications often portend new product’s functional-
ity. In such settings, the agent should generate behaviors that
can obfuscate its actual objective for as long as possible. The
execution of obfuscated behaviors may be more expensive.
This leads to the agent trading-off its available resources in
order to ensure privacy of the sensitive information.

Our problem setting considers two agents, an actor and an
observer. The actor can perform actions in the environment.
The observations, known to the actor and the observer, are
the result of the actor’s activities. The observations can be
partially or fully observable. Partially observable observa-
tions reveal some information about the actor’s actions and
state but do not reveal it exactly, whereas the fully observ-
able ones convey the exact action taken by the actor and the

*The authors appear in alphabetical order

Goall Goal2

AN

Figure 1: A gridworld example illustrating a stronger no-
tion of privacy. With an observation model that distinguishes
diagonal and orthogonal actions, the observer sees the same
sequence of observations for all the three goals regardless of
the agent’s true goal.

corresponding state transition. While the observer knows a
set of goals the actor could be pursing, the true goal is not
known to the observer. Therefore the objective is to securely
obfuscate the true goal while the actor is trying to achieve
it. In this work, we present approaches that the actor can uti-
lize to obfuscate its true goal for as long as the observation
model allows and in a cost-effective manner.

There have been recent works (Kulkarni, Srivastava, and
Kambhampati 2018; Masters and Sardina 2017; Keren, Gal,
and Karpas 2016b) which explore the problem of privacy
preservation and deception. We explore the goal obfusca-
tion problem introduced in Kulkarni, Srivastava, and Kamb-
hampati (2018). Our main contribution is twofold: introduc-
tion of a stronger definition of privacy with respect to the
observation sequence generated, and an approach to trade-
off additional cost incurred with the amount of obfuscation

achieved. The problem of goal obfuscation (Kulkarni, Sri-
vastava, and Kambhampati 2018) involves hiding the true
goal of the agent from the observer by making the obser-
vation sequence “consistent” with v candidate goals. Essen-
tially, consistent with v candidate goals means that, there
exists a plan with the same observation sequence to achieve
each of the v goals. However, we introduce a stronger defini-
tion of consistency, such that, when the solution computation
mechanism is run with either of the v goals as a “true goal”,
we get the same observation sequence. Thus, our solution
observation sequence makes all the v goals equally likely
for as long as possible. This preserves the privacy of the true
goal even when the observer has access to the computation
mechanism. Also, our approach can compute the cheapest
solution that satisfies the stronger privacy property. In the
following paragraph, we present an example that achieves
obfuscation with respect to v goals and satisfies the stronger
privacy property.

Consider the gridworld in Figure 1. Assume each cell
allows movement in all 8 adjacent cells with equal cost. The
initial state is at cell (0, 0). The candidate goals are given
by Goall, Goal2, Goal3 and Goal4, and Goal2 is the actor’s
true goal. With v = 3, we select Goall, Goal2 and Goal3
because they have higher landmark similarity than any other
combination of 3 goals (inclusive of true goal). The observa-
tion model emits two types of observation symbols for each
cell: 0; (marked by blue arrow) if the next cell is diago-
nally adjacent and o5 (marked by red arrow) otherwise. In
the Figure 1, we can see three plans where each reaches a
candidate goal. Each of these plans produce the same obser-
vation sequence given by {03, 01,01, 01,01 }. Each of these
plans is a secure goal-obfuscated plan, where v = 3. The ob-
servation sequence is the same regardless of the true goal. A
secure goal-obfuscated plan can be achieved by finding the
cheapest path to a closest point that is equidistant (in terms
of remaining steps) from each of the goals. In the example,
the equidistant state at cell (3, 4), is 2 steps away from each
goal. From this equidistant state, we check if there exists an
observation sequence which is common to the 3 goals and
reaches the goals in only 2 steps. From cell (3, 4), the obser-
vation sequence (01, 01) satisfies the requirement. The four
equidistant states for the three candidate goals are marked in
brown color.

If the observation model allows finer observations, such
that, each grounded action is mapped to a unique observation
symbol, then a fully obfuscated plan might not be possible.
In such cases, our aim is to obfuscate the true goal for as long
as possible by computing a plan that achieves an equidistant
state, such that the cost from the equidistant state to each of
the goals is minimized. We also discuss a method for choos-
ing v goals among a set of n candidate goals, such that, we
can minimize the solution cost and maximize the overall
obfuscation. In the following sections, we discuss our ap-
proach in detail. We also establish upper and lower bounds
on the cost of solutions which satisfy our definition of obfus-
cation. We present evaluation of our approaches using three
International Planning Competition (IPC) domains, namely,
Blocksworld, Logistics and Zenotravel.

2 Background and Preliminaries

We use the formulation of goal obfuscation planning prob-
lem (Kulkarni, Srivastava, and Kambhampati 2018) to de-
fine essential properties for a secure goal obfuscation prob-
lem. We also list a few cryptography assumptions that help
specify the behavior of the agents and our algorithm.

2.1 Classical Planning

A classical planning problem can be defined as a tuple
P = (D,1,G), where D = (F,A) is the actor’s domain
with F representing a finite set of fluents that define the
state of the world s C F, A is a finite set of actions avail-
able to the actor, and Z, G C F representing the initial state
and goal subformulae. Each action a € A is a tuple of the
form {c(a), pre(a),ef fT(a),ef f~(a)) where c(a) denotes
the cost of an action, pre(a) C F is a set of precondi-
tions for the action a, ef fT(a) C F is a set of positive
effects and ef f~(a) C F is a set of negative effects, i.e.,
I'(s,a) E Lifs £ pre(a);else I'(s,a) EsUeffT(a)\
eff~(a) where T'(+) is the transition function. The cumula-

tive transition function is given by I'(s, (a1, a9, ...,a,)) =
I'(T'(s,a1), (a2, . ..,an)). The solution to P is a plan or
a sequence of actions @ = (aj,as,...,a,), such that,

I'(Z,7) = G, i.e., starting from the initial state to the goal.
The cost of the plan is, cost(m) = >, . c(a;).

Note that, we assume all the actions in the planning prob-
lem are of uniform cost equal to 1. In other words, the length
of the plan is equal to the cost of the plan and an optimal plan
is a shortest length plan for the given planning problem.

2.2 Goal Obfuscation Planning Problem

The goal obfuscation planning problem, as defined in Kulka-
rni, Srivastava, and Kambhampati (2018), involves two
agents: an actor planning in the environment and an ob-
server. The observer has access to the domain model of the
actor, which includes the set of fluents, actions and the initial
state of the actor. The observer also has access to the set of
candidate goals but is unaware of the true goal of the actor.
Whenever the actor performs an action in the environment,
an observation is emitted. The observation model available
to the observer is deterministic and is accessible to both the
agents.

Definition 1. (Kulkarni, Srivastava, and Kambhampati
2018) A goal obfuscation planning problem is a tuple,
Pgo = (D, Z,G,Q,0), where,

e G={GAUG1UGs...UGy,_1} is a set of n candidate
goal conditions, and G 4 is the true goal of the actor.

e O = {o;li = 1,...,m} is a finite set of observations
symbols corresponding to the domain.

o O: (AXxS) — Qis the observation function which al-
lows either partial or full observability mapping the pair:
action taken and state reached to observation symbols

When the observation model allows partial observability,
multiple (a, s’) pairs correspond to the same observation.
When it allows full observability, each observation corre-
sponds to a unique (a, s’) pair. A plan solution to a goal-
obfuscation planning problem achieves the true goal while

obfuscating it from an adversarial observer for as long as
possible.

2.3 Secure Goal-Obfuscation

An important point to note is that the observer only receives
the observation sequence associated with the plan executed
by the actor. Despite having access to the agent’s goal set G
in Pgo, the observer is unaware of the agent’s true goal.
A secure goal-obfuscated plan is a solution to Pge, that
minimizes the bias of the observation sequence towards the
true goal. With respect to a chosen set of v goals, such that,
Gy, C GAG 4 € G, if we can make the observation sequence
associated with the actor’s plan identical for all the v goals,
then we can say that the true goal is securely obfuscated.
The value of v can be v < n. We will now distill three im-
portant properties of a secure goal-obfuscated plan: (1) For
each goal in G, there should exist a plan which achieves the
goal in [number of steps, (2) The observation sequence as-
sociated with v plans that each achieve a goal in G,, should
be the same, (3) The observation sequence should not be
biased by any goal in G,. The first and second properties
are straight-forward. The third property states that the actor
should be able to compute the same observation sequence
while generating a plan solution to any of the v goals. If
the above mentioned properties are followed, the observa-
tion sequence associated with the plan does not disclose any
specific information about the true goal.

2.4 Cryptography Assumptions

We now list a few standard assumptions in cryptography and
secure multi-party computation literature presented in sev-
eral prior works (Lindell 2005; Stolba 2017). The properties
listed in the Subsection 2.3 can be interpreted through these
assumptions. The following assumptions specify the proper-
ties on the behavior of the agents and the algorithm.

Assumption 1. Adversary knows the actor’s algorithm.
This means that the adversarial observer has access to the
algorithm and knows how the algorithm works. For exam-
ple, the adversary knows what states are generated by the
algorithm.

Assumption 2. Independence of inputs. This means that
the adversary can run the algorithm with different inputs.
For example, the adversary can set different goals as true
goal to check the variability of the output.

Assumption 3. Delivery of observations is fair and in-
order. This means that when the actor takes an action and
reaches a corresponding state, only then the adversary re-
ceives the corresponding observation. And the delivery of
each observation occurs in the order in which it was emitted
by the actor’s plan execution.

Assumption 4. Semi-Honest Adversary. This means that
the adversary is a passive adversary and follows the algo-
rithm and the protocol correctly but may glean information
from the execution to learn about the private information of
the actor.

All the four assumptions are commonly found in cryp-
tography literature. Assumptions 1 and 2 delineate the es-

sential properties of a good obfuscating algorithm. Assump-
tion 1 states that the agent should not rely on the privacy of
the algorithmic mechanism itself. Assumption 2 states that
the adversary may rerun the algorithm with different inputs,
therefore the algorithmic mechanism should be immune to
reruns. Assumptions 3 and 4 outline the behavior of adver-
sary. Assumption 3 states that the adversary can not manip-
ulate the execution of plan and delivery of the observations.
Assumption 4 states that our adversary is a passive adver-
sary that follows the protocol. These assumptions are signif-
icantly different from those typically taken in the Al com-
munity in that they do not rely on assumptions about the
adversary’s goal recognition model.

3 Computation of Secure Goal-Obfuscated
Plans

In this section, we will discuss our approach for computing
a secure solution to a goal obfuscation planning problem.
Given the properties in Subsection 2.3 and assumptions in
Subsection 2.4, we can say the following:

Definition 2. A secure goal obfuscated planner, computes
a plan solution mp,,,, and an observation sequence O'pg o
toa Pgo = (D,1,G,,Q,0), where, I'(Z,mp;,) | Ga,
such that, VG' € G, if G’ is set as the true goal of the
actor, there exists a plan Wé;go, and an observation sequence

Op,o» where (I, 7pgy,) = G' A Op,, = Opge.

Therefore, given a set of v goals, a secure goal-obfuscated
planner will generate the same observation sequence when
any of the v goals is set as a true goal. For a given problem,
if there does not exist a secure goal obfuscated plan (say
the observation model doesn’t allow for it), then the planner
computes a partial plan starting from initial state that sat-
isfies the privacy assumptions for as long as possible. This
partial plan guarantees secure obfuscation for the entirety of
its length (although not until the goal). In such cases, we
compute partial secure plans which minimize the distance to
the true goal in which revealing observations occur. The pro-
cess of computing secure goal-obfuscated plans consists of
two phases: (1) selection of v goals from the set of n candi-
date goals and (2) computation of a secure goal-obfuscated
plan and observation sequence. The first phase selects v can-
didate goals (inclusive of true goal) that have higher similar-
ity with each other. And then, the second phase computes
a plan whose observation sequence is consistent with all of
the goals present in the chosen set of v goals.

3.1 Decoy Goal Selection

We choose a set of v—1 candidate goals such that these goals
have higher similarity with the true goal and with each other.
We use a landmark based measure to compute the similar-
ity between the candidate goals. There is a prior work that
has made use of disjunctive landmarks for diverse planning
(Bryce 2014). In automated planning, for a given problem
instance each landmark is a subset of fluent instantiations
that every plan must satisfy in order to solve the problem.
The intuition behind using landmarks is that, the goals with
common landmarks will go through similar states/actions

and thereby introduce inherent ambiguity in the plans that
achieve the candidate goals. We can choose G, as follows:

1. For each goal, G € G, extract the set of landmarks and
add each distinct landmark to a set L.

2. Initialize each landmark L € £ with an empty list.

3. For each distinct landmark L, if it belongs to a goal G,
add G to L’s list.

4. Order the landmarks in £ in decreasing order of the num-
ber of associated goals.

5. Select all the landmarks in £ that are associated with at
least v goals. If no such landmarks exist then starting from
the first select all landmarks until there are v unique goals.

6. Order the unique goals in the decreasing order of their
frequency in the selected landmarks.

7. If the true goal appears in first half then starting from the
first goal (otherwise, starting from the last goal), divide
the goals in groups of unique v goals.

8. Select the group of v goals that includes the true goal.

Given the set of v goals, we can obtain a lower bound on
the cost of our secure goal-obfuscated plan.

Proposition 1. For given G,, let mg, be the optimal plan to
reach the farthest G; in G,,. If m, is a secure goal obfuscated
plan that solves Pgo then,

cost(my) = cost(mg,)

The above proposition states that the cost of a solution to
Pgo cannot be cheaper than the optimal cost to reach the
farthest goal in the set of v goals. This proposition can be
useful in a resource sensitive setting, the decoy goals can
be chosen such that the lower bound of the solution cost is
smaller than the available cost-bound. Note that in our set-
ting, all the actions have unit cost.

3.2 Secure Goal-Obfuscated Plan

Once we have chosen the set of v goals, the next step is
to compute a secure goal-obfuscated plan. As stated in the
properties listed in Subsection 2.3, the observation sequence
should not be biased by any particular goal in G,,. In order to
achieve that, we do the following: (1) we first compute a set
of states that are equidistant to each of the goals in G,, and (2)
then we compute a bounded length plan from the equidistant
state to a goal, such that the observation sequence is same for
plans reaching other goals from the equidistant state. We call
it bounded length belief plan, this idea is similar to that of
“k-ambiguous plan” in Kulkarni, Srivastava, and Kambham-
pati (2018). Formally, an equidistant state and a bounded
length belief plan are defined as follows:

Definition 3. An equidistant state, e, is a state in the
state space of a Pgo from which there are d number of
steps/observations remaining to each of the v goals.

Each of the v goals can be achieved in equal number of
steps from an equidistant state. When the observation model
allows partial observability, the observer operates in the be-
lief space. For every observation emitted, the observer’s be-
lief space is updated to reflect all the possible states consis-
tent with the observation sequence. For example, in Figure

Algorithm 1: Computation of Equidistant States

1 procedure Equidistant_Computation (D, G,, 2, O)

2 open <+ Priority_Queue () > Open list
3 equidistant < Priority_Queue() D Equidistant states
4 closed < {} > Closed list
5 h-dif f, h-max < Heuristic_-Computation (G,)

6 open.push(Z, h-max)

7 it h_diff = O then

8 ‘ equidistant.push(Z, h-max)

9 end

10 while open # 0 do

11 s «— open.pop()

12 closed <+ closed U s

13 for a, s’ € successors(s) do

14 g(s’) + g(s) + cost(a)

15 h-dif f, h-max < Heuristic_Computation (G,)
16 if s’ ¢ openand s’ ¢ closed then

17 open.push(s’, g(s’) + h-maz)

18 if h-diff = O then

19 ‘ equidistant.push(Z, g(s’) + h-max)

20 end

21 elseif g(s’) < g""*"(s’) then

22 if s’ ¢ open then

23 closed + closed \ s’

24 open.push(s’, g(s') + h-mazx))

25 if hodiff = O then

26 ‘ equidistant.push(Z, g(s’) + h-max)
27 end

28 else

29 ‘ update priority to g(s’) + h-max

30 end

31 end

32 end

33 end

34 return equidistant

35 procedure Heuristic_Computation (G,)

36 hg, < {}

37 for G € G, do

38 compute hg

39 hgv < hgv Uhg

40 end

41 h.dif f < max(hg,) — min(hg,)

2 return (h_dif f, max(hg,))

1, the observation o1, is consistent with the actor being in
any of the 4 diagonally adjacent cells. On the other hand,
when the observation model allows full observability, there
is no belief space. Note that, as mentioned before, in case
of full observability only partial plan, that is plan up to the
closest (to the goals) equidistant state is secure. In the case
of partial observability, we compute bounded length belief
plan.

Definition 4. A bounded length belief plan, 7 ,, is a plan
of length, d, associated with an observation sequence, O,,,
where T'(e,7g,) = Ga, then ¥ G € G, 3 7g of length
d and associated with observation sequence O,, where
I'(e,mg) &= G. Here d is the number of remaining steps
from e to each of the goals.

From an equidistant state, we perform a blind search for

bounded length d in the belief space. After d steps if all the
goals are found such that the observation sequence is same
then we output the bounded length belief plan and its obser-
vation sequence.

A secure goal-obfuscated plan is then generated by com-
puting a cheap plan to an equidistant state, e and then com-
puting a bounded length belief plan from e to the goals. The
computation of the first part is done by performing a state
space search. The state space is searched to compute a list
of equidistant states. If from a given state, the nearest and
the farthest of the v goals have the same number of remain-
ing steps then we add it to the list of equidistant states. The
details of this procedure are given in Algorithm 1. The com-
putation of second part constitutes performing a bounded
length blind search in the belief space starting from each
equidistant state until the solution is found. The equidistant
states are then processed one by one, starting from the clos-
est equidistant state to the goals. For each equidistant state,
the bounded length belief search is run. The details of this
procedure are given in Algorithm 2.

Given the set of equidistant states in the entire state space
of Pgo, we can obtain a upper bound on the cost of our
secure goal-obfuscated plan.

Proposition 2. For given G, let € = {ey, ..., e,} be the set
of all the equidistant states for Pgo, such that, Ve; € £, WGI,»
be the plan from initial state to e; and w¢i be the plan from
e; toa G € G,. If m, is a secure goal obfuscated plan that
solves Pgo then,

cost(m,) < argmax cost(n?) + cost(rs)
ec&

The above proposition states that the cost of a solution to
Pgo is bounded by the cost of a plan via the costliest
equidistant state. This proposition can be useful in a resource
sensitive setting, the set of equidistant states can be filtered
further before starting belief space search such that the up-
per bound on the solution cost is smaller than or equal to the
available cost-bound.

4 Empirical Evaluation

In this section, we evaluate the scope and usability of our
approach. Our empirical evaluation measures the following
objectives:

1. The impact of different observation models on the extent
of obfuscation.

2. The trade-off between additional cost and extent of obfus-
cation possible.

3. The comparison between run time and plan costs for goal
obfuscation planning versus optimal planning.

In the following subsections, we will discuss the domains
used, and the setup of the problems and observation models
for each of these. Then we will discuss the observations and
results derived for each of the three evaluation objectives.

4.1 Domains and Experimental Setup

We use three IPC domains, namely Blocksworld,
Logistics and Zenotravel to evaluate our approach.

Algorithm 2: Computation of Bounded Length Belief
Plan and Observation Sequence

1 procedure belief_plan_Computation (equidistant, D, G,, 2, O)
2 Rmin < 00O

3 farthestegui < 0

4 while equidistant # 0 do

5 Sequis hequi < equidistant.pop()
6

7

8

9

if hegui < hmin then
‘ farthestequi < Sequi

end

bequi + {Sequi} > Initial belief
10 open < Priority_Queue () > Open list
11 closed + {} > Closed list
12 open.push({Sequi, bequi))
13 closed closed U begui
14 while open # 0 do
15 s, b+ open.pop()
16 if g(s) > g(Sequi) + hequi then
17 ‘ break
18 end
19 if b |= GOAL-TEST(G,) then
20 ‘ return obs-sequence for s
21 end
22 for a, s’ € successors(s) do
23 0+ O(a,s’)
24 b’ < Belief-Generation(b, a, 0)
25 g(s’) + g(s) + cost(a)
26 if b’ ¢ closed then
27 open.push({s’,b"))
28 closed + closed Ub’
29 end
30 end
31 end
32 return obs-sequence for farthestequi
33 procedure Belief_Generation (b, a, 0)
34 b+~ {}
35 for 5 € bdo
36 fora € Ado
37 if § |= pre(a) and O(a,I'(38,a)) = o then
38 | v« Ur(s,a)
39 end
40 end
41 end
42 return b’

For each of the domains, we randomly generated 50 prob-
lem instances. For the Blocksworld domain, we gener-
ated problems with 4 to 8 blocks and towers of maximum
height 4 for both initial and goal states. For the Logistics
domain, we generated problems with goals consisting of 2 to
6 facts. For the Zenotravel domain, we generated prob-
lems with goals consisting of 2 to 6 facts. We generated 5
random candidate goals (n=5) for each problem.

In order to explore the first evaluation objective, we gener-
ated both partially and fully observable observation models
for all the three domains. The partially observable models
have many-to-one mapping of action-state pairs to observa-
tion symbols. For the sake of simplicity, we used lifted ac-
tion names as observation symbols. Therefore, the grounded
actions taken and associated states are mapped to the cor-

Domai . Observation Models Domain Metrics Optimal Plan | Obfuscated Plan
omain Metrics M o) o) o)
any-to-One | One-to-One Avg plan cost 5.64 6.57
Avg obfuscated length (%) | 81.50 24.31 Blocksworld | Avg run time 0.11 46.85
Blocksworld Avg run time 46.85 58.39 SD run time 0.05 7995
SD run time 79.95 73.24 u . -
Avg obfuscated length (%) | 84.06 62.93 o Avgplancost | 26.40 27.94
Logistics Avg run time 244.68 256.18 Logistics Avg run time 14.87 244.68
SD run time 249.46 250.12 SD run time 23.77 249.46
Avg obfuscated length (%) 73.75 48.65 Avg plan cost 8.3 10.79
Zenotravel Avg run time 216.14 224.14 Zenotravel | Avg run time 10.18 216.14
SD run time 21649 213.68 SD run time 13.03 216.49

Table 1: Empirical evaluation for different types of obser-
vation models. We report average percentage of obfuscated
plan length, and the average and standard deviation of time
taken (in seconds) to compute the obfuscated plan.

Cost-bounds
+20% | +50%
Blocksworld | Avg obfuscated length (%) | 71.90 | 77.75
Logistics Avg obfuscated length (%) | 73.25 | 83.58
Zenotravel | Avg obfuscated length (%) | 65.81 | 69.87

Domain Metrics

Table 2: Empirical evaluation to explore the cost versus ob-
fuscation trade-off. We examine the extent of obfuscation
for different cost-bounds. We report average percentage of
obfuscated plan length.

responding lifted action names. For the Blocksworld
domain, the observation symbols were pickup, putdown,
stack, unstack. For the Logistics domain, the observa-
tion symbols were load-truck, unload-truck, load-airplane,
unload-airplane, drive-truck, fly-airplane. Finally for the
Zenotravel domain, the symbols were board, debark, fly,
zoom, refuel. The fully observable models have one-to-one
mapping, that is the observer is aware of the actions taken
and the states reached by the agent.

In order to balance the run-time between the state space
search and the belief space search, we go back and forth be-
tween these two searches. For a given problem, when the
heuristic value reaches some threshold (say, reduces by 50%
of its value from the initial state), we start processing the
states in the equidistant queue. We then run the belief space
search for the states in equidistant queue until they are ex-
hausted. Once the equidistant queue has been exhausted, we
restart the state space search again to find further equidistant
states exhaustively. After which, we again start with belief
space search. We can modulate the heuristic threshold ac-
cording to the problem types and desired objectives. This
strategy can be especially helpful when the state space is
large, if the planner spends all its time resource in exploring
the state space, there will be no resource left for exploring
the belief space. For the experiments, we kept the threshold
of 50%.

4.2 Results

The evalution results are presented in Tables 1, 2 and 3. We
modified the STRIPS planner pyperplan (Alkhazraji et al.
2016) to implement our algorithms. To compute equidis-

Table 3: Empirical evaluation to explore differences in op-
timal plan to goal and obfuscated plan to goal. We report
average plan cost and average, standard deviation of time
taken in seconds to compute the solution to the goal.

tant states we used 1mcut heuristic!. We ran the exper-
iments with v = 3 for all the domains. We ran our ex-
periments on 2.7 GHz Intel Core i7 processor with 16 GB
RAM. The experiments were run with 15 minutes time-out
for each problem instance. The following number of prob-
lems reached time-out before a solution could be found: 4
out of 50 problems in the Blocksworld domain, 19 out
of 50 problems in Logistics and 22 out of 50 problems
in Zenotravel. These problems were not considered in
the results.

Table 1 examines how the different observation models
affect the length of obfuscated part of the plan solution.
It is not always possible to find a completely secure goal-
obfuscated plan. In such cases, we output a partial solu-
tion. Here the obfuscated solutions were found without any
resource constraints. For the fully observable observation
models, we see that the Blocksworld domain had the
least obfuscated solutions. For the partially observable ob-
servation models, we see that Logistics domain had the
most obfuscated solutions.

Table 2 evaluates the impact of constraining the additional
cost on the length of obfuscated parts of the solution. We ran
experiments with cost bound of 1.2 and 1.5 times the opti-
mal cost of the true goal. By only incurring 20% additional
cost, we are able to generate plans with substantial portions
obfuscated. Increasing the additional cost does not dramati-
cally improve the obfuscation performance. This highlights
the importance of the observation model and candidate goal
selection in the resource bounded goal obfuscation problem.

Table 3 compares the run-time and cost differences be-
tween optimal and goal-obfuscated plans. For all the three
domains, the plan cost of obfuscated plans is slightly higher
than optimal plans. Although the main difference lies in
the amount of time taken to compute the obfuscated plans.
Given there is enough time available to compute obfuscated
plans, the plan cost incurred for the obfuscation guarantee is
not too high.

"By using lmcut heuristic, we approximate the equidistant
states since it is not the same as the actual optimal cost h* (-).

5 Related Work

Planning and diagnosis have long been recognized for their
inferential similarities (Sohrabi, Baier, and Mcllraith 2010).
When planning systems are deployed, diagnosis is seen
as a mechanism to refine its models of its own actions
(Kuhn et al. 2008), the environment (Molineaux, Kuter, and
Klenk 2012), and of adversary capabilities (Birnbaum et al.
1990). The combination of planning, execution, diagnosis,
and learning underpins much of the research in the Metacog-
nition (Cox 2005) and Goal Reasoning (Aha 2018) commu-
nities. From this perspective, our work is an extension to
understanding how planning, goal reasoning, and execution
interact in an adversarial world.

Recently, there has been some interest in exploring no-
tions of privacy preservation, deception, etc., in adversar-
ial scenarios (Kulkarni, Srivastava, and Kambhampati 2018;
Pozanco et al. 2018; Masters and Sardina 2017; ?; Keren,
Gal, and Karpas 2016b). In Kulkarni, Srivastava, and Kamb-
hampati (2018), the authors introduce the problem of goal
obfuscation and provide a satisficing solution to the prob-
lem, which is not guaranteed to be secure. In Pozanco et
al. (2018), the authors explore a setting, where an agent
plans to prevent another agent from achieving certain goal.
In this case, both the agents are actively planning towards
a goal. However the authors do not use any obfuscating
strategy to hide their intent of blocking. In Masters and
Sardina (2017), the authors present an approach to obfus-
cate goals by making one goal more likely than the other,
however their approach does not support deception when
the adversary knows their algorithm. In Keren, Gal, and
Karpas (2016b), the authors obfuscate a goal with only one
candidate goal that shares maximal non-distinct path, ob-
fuscating part of the plan. Most of these works use goal-
recognition/plan-recognition modules (Ramirez and Geffner
2009; 2010; E-Martin, R-Moreno, and Smith 2015; Sohrabi,
Riabov, and Udrea 2016; Keren, Gal, and Karpas 2016a) to
make inferences about the agent’s goals and to achieve de-
ception. However, using a goal recognition module will re-
sult in the system being prone to making assumptions about
the observer’s goal-recognition capabilities. On the other
hand, we do not make any assumptions about the observer’s
goal recognition capability but instead provide obfuscation
for the worst case adversary. We also explore the obfusca-
tion versus cost trade-off in such scenarios. We do this by
computing a cheapest solution to a goal obfuscation prob-
lem that is secure and follows certain standard cryptography
assumptions.

6 Conclusion

In this work, we presented an approach to compute secure
goal-obfuscated plans to conceal the true goal of an Al agent
from an adversarial observer. Our approach provides a cost-
efficient solution that satisfies four standard cryptographic
assumptions to ensure that goal obfuscated plan is secure.
Under these assumptions, the Al agent may incur an addi-
tional cost to reach its true goal, but the adversary will not
be able to diagnose the true goal of the agent. Depending on
the resource budget of the agent, it can modulate the amount

of obfuscation it needs. A secure goal-obfuscated solution
is achieved by obfuscating the true goal of the agent with
v-1 other candidate goals. In order to choose these candi-
date goals, we introduce a goal similarity measure that aids
in selecting goals that share common landmarks with the
true goal. After selecting the set of decoy goals, we per-
form a state space search and followed by a bounded length
belief space search to compute a secure goal-obfuscated
solution. We present some theoretical guarantees on the
goal obfuscation mechanism, and evaluate our approach us-
ing three IPC domains, BlocksWorld, Logistics and
Zenotravel, to show the feasibility and usefulness of our
approach.

This work opens two sets of research questions. Regard-
ing the algorithms, the approach presented here is greedy in
that the initial selection of v goals is not revisited. While
exploring all possible sets of goals is computationally in-
tractable, additional work should define methods with intel-
ligent backtracking and improved heuristics. Furthermore,
it assumes existence of equidistant states, relaxing this as-
sumption while still identifying obfuscated plans is impor-
tant for real world domains. Regarding a deployment set-
ting, multi-agent domains consist of potential collaborators
and adversaries all operating with different goals and time-
horizons. Therefore, it is necessary for the agent itself to
control the degree of obfuscation desired from each agent
and how that changes over time. In this paper, we introduce
the obfuscation utility trade off and present an algorithm to
select obfuscated plans with guarantees and bounds.

References

Aha, D. W. 2018. Goal reasoning: Foundations, emerging
applications, and prospects. AI Magazine 39(2).

Alkhazraji, Y.; Frorath, M.; Grtzner, M.; Liebetraut, T.; Or-
tlieb, M.; Seipp, J.; Springenberg, T.; Stahl, P.; and Wlfing,
J. 2016. Pyperplan. https://bitbucket.org/malte/pyperplan.

Birnbaum, L.; Collins, G.; Freed, M.; and Krulwich, B.
1990. Model-based diagnosis of planning failures. In AAAI,
volume 90, 318-323.

Bryce, D. 2014. Landmark-based plan distance measures
for diverse planning. In ICAPS.

Cox, M. T. 2005. Field review: Metacognition in compu-
tation: A selected research review. Artif. Intell. 169(2):104—
141.

E-Martin, Y.; R-Moreno, M. D.; and Smith, D. E. 2015.
A fast goal recognition technique based on interaction esti-
mates. In Tiventy-Fourth International Joint Conference on
Artificial Intelligence.

Keren, S.; Gal, A.; and Karpas, E. 2016a. Goal recognition
design with non-observable actions. In AAAI 3152-3158.
Keren, S.; Gal, A.; and Karpas, E. 2016b. Privacy preserving
plans in partially observable environments. In IJCAI, 3170—
3176.

Kuhn, L. D.; Price, B.; De Kleer, J.; Do, M. B.; and Zhou,
R. 2008. Pervasive diagnosis: The integration of diagnostic
goals into production plans. In Aaai, 1306-1312.

Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2018. A
unified framework for planning in adversarial and cooper-
ative environments. In ICAPS Workshop on Planning and
Robotics.

Lindell, Y. 2005. Secure multiparty computation for privacy
preserving data mining. In Encyclopedia of Data Warehous-
ing and Mining. IGI Global. 1005-1009.

Masters, P., and Sardina, S. 2017. Deceptive path-planning.
In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, 4368-4375.

Molineaux, M.; Kuter, U.; and Klenk, M. 2012. Discover-
history: Understanding the past in planning and execution.
In Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems-Volume 2, 989—
996. International Foundation for Autonomous Agents and
Multiagent Systems.

Pozanco, A.; E-Martn, Y.; Fernndez, S.; and Borrajo, D.
2018. Counterplanning using goal recognition and land-
marks. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, 4808—
4814. International Joint Conferences on Artificial Intelli-
gence Organization.

Ramirez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the 21st international joint con-
ference on Artifical intelligence. Morgan Kaufmann Pub-
lishers Inc, 1778-1783.

Ramirez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Proceedings
of the Conference of the Association for the Advancement of
Artificial Intelligence (AAAI 2010).

Sohrabi, S.; Baier, J. A.; and Mcllraith, S. A. 2010. Diag-
nosis as planning revisited. In KR.

Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan recog-
nition as planning revisited. In IJCAI, 3258-3264.

Stolba, M. 2017. Reveal or Hide: Information Sharing in
Multi-Agent Planning. Ph.D. Dissertation, Czech Technical
University.

